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Attractor neural networks storing multiple space representations:
A model for hippocampal place fields
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A recurrent neural network model storing multiple spatial maps, or “charts,” is analyzed. A network of this
type has been suggested as a model for the origin of place cells in the hippocampus of rodents. The extremely
diluted and fully connected limits are studied, and the storage capacity and the information capacity are found.
The important parameters determining the performance of the network asparstyof the spatial represen-
tations and the degree of connectivity, as found already for the storage of individual memory patterns in the
general theory of autoassociative networks. Such results suggest a quantitative parallel between theories of
hippocampal function in different animal species, such as primafgisodic memoryand rodentgmemory
for space. [S1063-651X98)09112-0

PACS numbd(s): 87.10+¢€, 05.904+m

I. INTRODUCTION have been extensively studied with the tools of statistical
physics[1]. Efficiency measures, like the number of storable

Knowledge of space is one of the main objects of compumemory items or the quality of retrieval, can be computed
tation by the brain. It includes the organization of informa-for any appropriately defined formal model. An intensive
tion of many kinds and many origisnemory, the different €effort was performed to embed in these idealized models
sensory channels, and so)oimto mental constructs, i.e., More and more elements of biological realism, trying to cap-
maps which retain a geometrical nature and correspond tdure the relevant anatomical and functional features affecting
our perception of the outside world. the performanqe of the network. It was then found that a

Every animal species appears to have specialized systerf2€0"y of the hippocampur, more precisely, CABas an
for spatial knowledge in some region of the brain, more ordutoassociative network has as its fundamental parameters

less well developed and capable of performing sophisticateH1e degree of intrinsic connectivity, i.e., the average number

computations. For rodents there is a large amount of experlQf units which send connections to a given unit, and t_he
mental evidence that the hippocampus. a brain region funCs_parsnyof the representations, roughly the fraction of units
pp pus, 9 .Wwhich are active in one representation. These parameters

Flonally s.|tuated. at the enq of all the.sensory streams, 1g5ve biological correlates that are measurable with anatomi-
involved in spatial processing. Many hippocampal cells ex-

. " - ) i 7"cal and neurophysiological techniques.
h|b|t p!ace relatt_ed firing, _that is, they f|r§ when the animal is Spatial processing, as it is performed by the rodent hip-
in a given restricted region of the environméiiie “place

' ! ' _ pocampus, also involves memory of some kind; recent ex-
field”), S0 thaj[ they contain a representation of the Positiotherimental evidence supports the idea that spatially related
of the animal in space. firing is not driven exclusively by sensory inputs but also

The hippocampus, one of the most widely studied brairreflects some internal representation of the explored environ-
structures, shares the same gross anatomical features acr@sént. First, place fields are present and stable also in the
mammalian species; nevertheless, it is known to have differdark, and in conditions of deprived sensory experience. Sec-
ent functional correlates, for example, in primates and huend, completely different arrangements of place fields are
mans (where it is believed to be involved impisodic found in different environments or even in the same environ-
memory roughly, memory of eventsand in rodents, in ment in different behavioral conditions.
which it is mainly associated with spatial representation. These findings have led to the hypothesis that Gk,

One relevant feature of the hippocampus which is mainperhaps, other brain regions with dense connecjistgres
tained across species is a region, named CA3, characterizédharts,” representations of environments in the form of ab-
by massive intrinsic recurrent connections. It was appealingtract manifolds, on which each neuron corresponds to a
for many theorists to model this region asaurtoassociative point, that is the center of its place field. Place fields arise as
memorystoring information in its intrinsic synaptic structure, a result of an attractor dynamics, whose stable states are
information which can be retrieved from small cues by"“activity peaks” centered, in the chart space, at the animal’s
means of an attractor dynamics, and which is represented jposition. It is important to note that the localization of each
the form of activity configurations. neuron on a chart does not appear to be related to its physical

Within the episodic memory framework, each attractorlocation in the neural tissue.
configuration of activity is the internal representation of The positions of place fields are encoded by the recurrent
some memory item. The CA3 autoassociative network caonnections, and it is possible to store many different charts
be seen as the heart of the hippocampal system, containing the same synaptic structure, just as many different patterns
the very complex, intermodal representations peculiar to epiare stored in a Hopfield net, for example, and different ac-
sodic memory. Autoassociative, or attractor neural networksivity peaks can be successively evoked by appropriate in-
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puts, just as it happens with autoassociative memories. Note that the normalization in E@2) is chosen so as to

It is interesting to address the issue of whether an episodikeep the synaptic input to a given unit fixed wHéh| varies
memory network and the “spatial multichart” memory net- and the number of units is kept fixed, that is, the density of
work share the same functional constraints, so that a biologisfc’s N/|M| varies(the |[M| factor will then compensate for
cal brain module capable of performing one of the tasks igshe fewer input units within the range of substantil
also adequate for the other. Here we present a statistical metrength. A fixed-point activity configuration must have the
chanics analysis of the multichart network, focusing on theform
parallel with autoassociative memory in the us(episodic
memory sense. It is found that the performances of these
two networks are governed by very similar laws, if the par- V(=g
allel between them is drawn in the appropriate way.

In Sec. Il the case of a single attractor chart stored is
studied, then in Sec. Il the case of multiple stored charts is
analyzed and the storage capacity is found, first for a simpli-
fied model and then for a more complex model which makes g[f dr'K([r=r')V(r")— 0} ref}
it possible to address the issue of sparsity of representations.  V(r)= Q
In Sec. IV the storable information in a multichart network is 0, re,
calculated, making more precise the sense in which such a

network is a store of information, and completing the parallehyhere() is a domain for which there exists a solution of Eq.

+

®

f dr'K(|r=r')V(r)'— o
M

We could write Eq.(5) as

(6)

with autoassociative memories. (2) that is zero on the boundary.
If only solutions for whichQ) is a convex domain are
Il. THE SINGLE MAP NETWORK considered, the fact that(r) is zero ondQ) will ensure that

p . h ¢ inal units with pfc’'s outside) are under threshold, therefore
As a first step, we consider the case of a single attractaie;r 4ctivity is zero and solutions of E¢B) are guaranteed
map encoded in the synaptic structure, as was proposed | pe sojutions of Eq(5). The size and the shape of the
[2]. We focus here on the shape and properties of the atfragi,main ) in which activity is different from zero is deter-
tor states, as a useful comparison for the following treatment inaq by Eq.(2). As a first remark, we notice that it is

of the multiple charts case. . _independent of the value of the threshaldin fact, if V/, is
firirrh?a?egurons are modeled as threshold linear units, Wm& solution of Eq.(6) with thresholdg, given the linearity of
g rate. Eg. (6) within €,

Vi=g[h;—6]"=g(h;— )@ (h;— ), (1) Py
. . . V(g/ :_V‘g
i.e., equal to zero if the content of the square brackets is 0
negative.h represents the synaptic input current, coming
from other cells in the same modulé,is a firing threshold, will be a solution of the same equation wi instead of6,
which may incorporate the effect of a subtractive inhibitorywith the same null boundary conditions 6h Rescaling the
input, common to all the cells, as it will be illustrated later threshold will then have the effect of rescaling the activity
on. The connectivity within the module is shaped by theconfiguration by the same coefficient. This means that sub-
selectivity of the units. Ifr; is the position of the center of tractive inhibition cannot shape, e.g., shrink or enlarge, this

the place field of théth cell in a manifoldM of size|M|,  stable configuration, and therefore it is not relevant for a
corresponding to the environment, the connection betweegood part of the subsequent analysis. Some form of inhibi-
cellsi andj may be expressed as tion is nevertheless necessary to prevent the activity from
exploding. Moreover, there are fluctuation modes which can-

M| not be controlled by overall inhibition as they leave the total

Ji :WK(“i_ rj|)’ 2 average activity constant. They will be treated in Sec. Il C.

It is found that, at least in the one-dimensio&aD) case,

whereK is a monotone decreasing function of its argumentthese modes do not affect stability in the single chart case.

The synaptic input to théth cell is therefore given by In the absence of an external input, any solution can be at
most marginally stable, because a translation of the solution

M| is again a solution of Eq6). An external, “symmetry break-
hi=2 J;Vi=> WK(|ri_rj|)Vj- (3)  ing” input, taken as small when compared to the contribu-
! ! tion of recurrent synapses, is therefore implicit in the follow-

If the numberN of cells is large, and the place fields ing analysis.

centers(pfc) are homogeneously distributed over the envi-

ronmentM (be it one or two dimensionglwe can replace A. The one-dimensional case
the sum over the indexwith an integration over the coor-  The case of a recurrent network whose attractors reflect
dinates of the pfc's: the geometry of a one-dimensional manifold, besides being a
conceptual first step in approaching the two-dimensional
h(r):J dr'K(|r=r')V(r'). (4 case is relevant by itse!f, fqr examplcla,. in modgling othe'r
M brain systems showing direction selectivity, e.g., in head di-
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rection cells [3,4], and also for place fields on one- The kernel
dimensional environmen{$].
In this case Eq(6) reads K(r—r")=0(1-|r—r')(1—|r—r'|) (16)

K(lr=r"Dv(r')—a|,
R

R will result in a peak of activity of semiwidth
V(r)=g

R= (17)

a
V29
Equations of this typ€5) have more solutions in addition
to the ones considered above, representing a single activity

V(R)=V(—R)=0. 7)

For several specific forms of the kerr€lit is possible to
solve explicitly Eq.(7), yielding interesting conclusions. For

example, if peak. For example, if we consider an infinite environment,
K(|r — r’|)=e*|“r" ®) periodic solutions will be present as well, representing a row
' of activity peaks separated by regions of zero activity. These
(see, also[2)) differentiating Eq.(7) twice yields solutions can be verified to be unstable if we model the in-
hibition as an homogeneous term acting on all cells in the
V"(r)=—y?V(r)+gé, 9 same way and depending on the average activity. Intuitively,
if we perturb the solution by infinitesimally displacing one of
wherey=y2g—1. the peaks, it will tend to collapse with the neighbor that has

Solutions vanishing at-R and R (and not vanishing in come closer.
]1—R,R[), have the form

B. The two-dimensional case

geo
V(r)=A coqyr)+ 2g—1 (10 To model the place cells network in the hippocampus, we
need to extend this result to a two-dimensional environment.
with The equation for the neural activity will be
gé ’
= V(r)= fdr’K r—r'pv(r’)y—o| . 18
A=~ Za- Dol oR) (12) (N=g| | dr'K(r=r')v(r) (18)
The value ofR for which Eq.(10) is a solution of Eq(7) The generalization to 2D is straightforward if for the ker-

is determined by the integral equation itself: for example, byhel K(|r —r’|) we consider the one with Fourier transform
evaluatingV’(R) or V'(—R) from Eq. (7) we get

2

=, 19
1+p? 19

V'(=R)=—V'(R)=g6. (12 K(p)

Substituting Eqs(10) and(11) in Eqg. (12) we have
[the two-dimensional analog of the kernel of E8)] that is,
tan(yR)= -, a kernel resembling the propagator of a Klein-Gordon field
in Euclidean space. The fact that this kernel is divergent for

so that (r—r")—0 does not give rise to particular problems, since,
tan X(— ) +nw in the continuum limit of Eq(4), the contribution to the field
= h coming from the nearby points will stay finite, and in fact
Y two units will be assigned pfc’'s so close to each other as to

yield an overwhelmingly high connection only with a small
probability. Let us look for a solution with circular symmetry
such that activityv(r) is zero outside the circle of radilg,

RequiringR to be positive and/(x) to be positive for
—R<r<R, leads us to choose

—tan Y(y)+ C(R). If we apply the Laplacian operator on both sides of
R= f (13
_ ) ) V(r)=gJ dr'K(r=r")V(r')—8, (20
Note thatA>0. R is then a monotone decreasing function of CR)

v, and therefore of the gaig.
This is also true for other forms of the connection kerne
K. As an example, consider the kernel

[we obtain

VaV(r'y=—9*V(r')+gé (21
K(r—r')=cogr—r"). (149 o, L )
(again,y*=2g—1), which in polar coordinates reads
By a similar treatment it is shown that a solution is obtained

with V”(r)+%V’(r)z—yZV(r)JrgH. 22)

1
R= g (15 The solution is
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go case. Suppose now that the contribution from dtle map to
V(r)=AJdy(yr)+ 29-1" (23 the connection between céland cellj is given by
d
Jo is the Bessel function of order 0. For the solution to K(|r-(“)—r<-“)|)=2 (77!(,0, 77'-(“)"'1), (25)
vanish on the boundary @f(R) one must take ! ! = !
A go so that
(29—1)Jo(YR) L d
_ (), (w)
The other condition that determin€&may be found by Jij_NZ«l Z’l (" g+ 1), (26

substituting Eqg.(23) in Eqg. (20). Here again,R(g) is a
monotone decreasing function. As in the one-dimensionajyhered is the dimensionality.

case, solutions with a nonconnectéal even nonconvex p=aN is the number of stored charts. Equati@%) de-
support can be seen not to be stable. scribes an excitatory, very widespread form for the kef®gl
(the contribution to the connectivity is zero only if the rpc’s
Ill. STORING MORE THAN ONE MAP of the two cells are at the farthest points apart, i.e., at 180°).

This spread of connectivity would lead to configurations of
activity that are large in the rpc space, which translated in
autoassociative memory language would be very “un-
parse,” i.e., very distributed representations. It is therefore
lausible that this will severely limit the capacity of the net.
n any case, the form of Eq25), factorizable in one term
epending ony, and one term depending ay , after incor-
porating the constant part in a functibf(x), makes it pos-
sible to perform the free-energy calculation through Gauss-
ian transformations as if6]. A similar model has been
0 M| studied in_[9] vyith McCuIIoch-Pitt_s neurons. _
3= z WK(“i(#)_r},l)D_ (24) suQm I;asr;]l!iglrﬁrl]air; useful to describe the thermodynamics of

Z 2 d(w), 1’:(M)Vi, 27)
iop

Let us imagine now that the pfc’s for each cell are drawn
with uniform distribution on the environment manifoM,
and connections are formed according to E2). Several
“space representations” may be created by drawing again
random the pfc of each cell from the same distribution. Th
connection between each pair of cells will then be the sum o
a number of terms of the forn2), one for every “space
representation,” or “map,” or “chart.” Withp=aN maps,
and the pfc of theth cell in theuth map indicated byi("):

n=1

The question that immediately arises is: what is the ca-
pacity of this network, that is, how many maps can we store,
so that stable activity configurations, corresponding to some
region in the environment described by one map, like the
ones described by the solutions of Ef), are present? The
problem resembles the classic attractor neural network prob-

lem[1], with threshold Ii_near units. A standard treatment haswhereB(x)zbe(y)dy, andb(x) is a function describing a
been developefb] allowing us to calculate the capacity of & niform inhibition term depending on the average activity in
ngtwork of thrgshold linear units with patterns drgwn from 3the net.9®™ is a symmetry breaking field, pointing in a
given distribution and stored by means of a hebbian rule. Thgjraction in theuth map space. The mean-field free energy
treatment is very S|mpl|f|_ed_|n the extreme dl_lutlon limit  the replica-symmetric approximation can be calculated
[7,8]. In the next sections it will be shown how this treatment ye partition function is calculated as the trace over a mea-
can be extended to the map case, first for one particular formyre ‘that implements the threshold-linear transfer function,
of the kernelK, leading to the solutu_)n of the capacity prob- see[6]). The presence of a phase with spatially specific ac-
lem for a fully connected network; in the following, the SO- ity correlated with one map will be signaled by solutions

lution is extended to more general kernels, first in the diluteq)f the mean-field equations with a nonzero value for the
limit, then for the fully connected network. order parameter

Another related question is: how much information is the
synaptic recurrent structure encoding, and in which sense is 1
the synaptic structure a store of information? The aim is to x'<ﬂ>=_2 77:(”)Vi , (28)
develop a full parallel between the multichart network and Ndi=1
autoassociative networks, and if possible to characterize the

parameters constraining the performance of this system. Which plays the role of the overlap in an autoassociative
memory. This parameter has the meaning of a population

vector [10], that is, the animal position is indicated by an
average over pfc’s of the cells weighted by cells activity.

Let us consider a manifoldl with periodic boundary con- The set of resulting mean-field equations can be reduced
ditions, that is, a circle in one dimension and a torus in twoto a set of two equations, EqeA7) and (A8), in two vari-
dimensions. The pfc of a cefl can then be described by a ables, the “nonspecific” signal-to-noise ratiey, and the
two-dimensional unit vecto®; for the one-dimensional case ‘‘specific,” space-related signal-to-noise ratio The details
and by a pair of unit vectors;il'2 for the two-dimensional of the calculation are reported in Appendix A.

z|<

H:_

> Jijvivj—NB<E
i,j(#i)

N[ =

-M

A. The fully connected network: “Dot product” kernel
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The critical valuex,. indicating the storage capacity of the Cj; is a “dilution matrix”
network is the maximum value for which E@A7) still ad-
mits solutions corresponding to space-related actigriyn- 1 with prob c,
zerov) and may be found numerically. At this valug the Cij= 0 with prob 1-c (32
system undergoes a first-order phase transition towards a '
state in which no space-related activity is possible. Equation ;g Nc/In N--0 as N—so. In the thermodynamic  limit
(A8) .gives the range of gain values for which there existNHOO the activity of any two neuron¥; and V; will be
solutions at a givemr<ac [6]. o _ uncorrelated[7]. A number of chartsp=acN is stored.

In this model there is no possibility of modulating the | ooking for solutions with one “condensed” map, that is,
spread of connections in the chart space. As we anticipatedy|utions in which activity is confined to units having pfc for
the activity configurations that one obtains are very wide, given chart in a certain neighborhood, it is possible to write
with a large fraction of units active at the same time. Cellsi,q fieldh: as the sum of two contributions, a “signal,” due
will .have very large place fields, covering a large part of the,; e coiﬂdensed map and a “noise” terp (z being a
environment(of the order of roughly one half for the one- \,,45m variable with Gaussian distribution and variance

dimensional case, and roughly one quarter for the Wogng que to all the other, uncondensed, maps. In the con-
dimensional cage As one would infer from the analysis of gnyym fimit, labeling units with the position® of their pfc
autoassociative memories storing patterns, for example bl iha condensed map,
nary, these “unsparse” representations of space will lead to

a very small capacity of the net. ) , )

For the model defined on the one-dimensional circle the h(r1)=gJ dr K(rt=rt)v(rt)+pz (33
capacity found isx;.~0.03. At this value the system under- M
goes a first-order transition. As increases beyond., x
jumps discontinuously from a finite value to zero.

The capacity for the diluted analog of this modete[8], 2_ 2/ /K2 _ ¢t
Appendix A and Sec. Il Bis given by the equation p"=ayMIF(KHr=r")), 39

the noise will have a variance

E1(W,V)=[(1+ 8)A,]?>— aA;=0. (29  Where
N
Remember that in this cage= acN wherec is the connec- _ EE v 5
tivity fraction parameter; see Sec. Il B. In this casg y=n& Vi)

~0.25. Ata, the transition is second order, with the “spatial
overlap” x approaching continuously zero, verified at least The fixed-point equation for the average activity profile
with the precision at which it was possible to solve numeri-xX(r) is
cally Eqg. (29. For the 2D case, storage capacities age

~0.0008 for the fully connected network arne~0.44 for

the diluted network.

To get a larger capacity, and to provide a possible com-
parison with the experimental data from the hippocampus, invhere agairDz is the Gaussian measure, and
which the tuning of place fields is generally narrow, we must
extend our treatment to more general kernels, and this will be
done in the following two sections.

x1<r>=gf+Dz(h<r>—a), (36

h(r)=fdr’K(r—r’)xl(r’)+b(x)—pz (37)

B. Generic kernel: Extremely diluted limit and

Consider a network in which every threshold-linear unit, dr
whose activity is denoted by, , senses a field X= f ™[ xH(r) (38)

1
hi:EE CijJij Vi, (30 is the average overall activity. The average squared activity
I#i (entering the noise temwill read

whereJ;; is given by Eq.(24). From now on the kerneK is dr [+
defined as y:ng WJ Dz(h(r)— 6)2. (39
K(r—r")=R(r—r")—K,
(r=r)=K{=r" ' The fixed-point equations may be solved introducing the
rescaled variables

K=((R(r=r")) (31)
for any r, where({)) means averaging over. With this w= b(x)—ﬁl (40)
notation, whatever the original kernil, K is the subtracted P
kernel which averages to zero. The manifdlds taken with N
periodic boundary conditiofithat is a circle in one dimen- o(r)= x(r) (41)

sion and a torus in the two-dimensional gase
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FIG. 3. The “activity peak” profile corresponding to the solu-

n of Eqg. (42) at the maximal storage level Atl|=30 and|M|

=15. The second case is plotted expanded to match the environ-
ment size of the first one and to show the effect of more widespread

FIG. 1. The storage capacity plotted as a function of the “maptio
sparsity” a,,, for the 1D model, for the extremely dilutddpper
curve and the fully connectedower curve limits.

The fixed-point equation fos(r) is connections.
v(r)=gN fdr’K(r—r’)v(r’)er , (42) y:p292f %M(fdr'K(r_r,)v(r'HW (49
where where
MX)=xP(X)+ o(X), (43 M(X)=(1+x?)D(x)+x0(X). (45)
[®(x) ando(x) are defined in Eq(A15) and Eq.(A16)] is By substituting Eq(44) in Eq. (34), we obtain

a “smeared threshold linear function,” monotonically in-

creasing, with 1
° ;=92|M|<<K)>fdrM(fdr'K(r—r’)v(r’)wLw .

lim Mx)=0 (46)

X— — 0

and If we can solve Eq. 42 and find(r) as a function ofw
and g, a solution is found corresponding to a value @of
lim Mx)/x=1. given by Eq.(46). To find the critical value o, we have to
X— oo maximizea overw andg. The mathematical solution of Eq.
(42) is treated in Appendix B.

In terms ofw anduv(r), y reads With this model, we can modulate the spread of connec-
tions by acting orK(r—r’) or alternatively, by varying the
size of the environment. The results are depicted in Fig. 1 for
the 1D circular environment and in Fig. 2 for the 2D toroidal
environment(upper curves Examples of the solutions of
Eq. 42 are displayed in Fig. 3 for the 1D environment and in
Fig. 4 for the 2D environment.

We note that, as the environment gets larger in compari-
son to the spread of connectioftkerefore, to the size of the
S activity peal, the capacity decreases approximately as

max

a.~—1In(ay), (47)

102t /’é\ ] wherea,, is themap sparsityand it is equal to

. . Kqg
4 -2 am= M ) (48)

107 107 10
1/IMI

FIG. 2. Same as Fig. 1, for the 2D model. The capacity iswhereky is a factor roughly equal te-4.5 for the 1D model
smaller than for the 1D model for the samag. and ~ 3.6 for the 2D model.
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6~ V(r,t+1)=gp(t)

XN

dr’ ,V(r’,t) b(x(t))
fMWK“_” PO p )

(50

A1+ 1) =gPalMIp? 0K | ar
M

XM

dr’ L V(') b(x(t))
fMMK“_” PO )
: (51)

FIG. 4. The maximal storage activity peak profile in 2D at
M| =400.

y -10 -10

This evolution operator has as its fixed poing(r)
=pouo(r) and py, wherevy(r) and py are the solutions of

That is, the sparser the coding, the less the capacity. ThisaS:(42), (34), and(44), i.e., the stable states of our system.

is, at first glance, in contrast with what is known from the W€ can linearize the evolution operator around
theory of autoassociative networks, in which sparser repre-Yo(r),po] and look for fluctuation modeseigenvectors

sentations usually lead to larger storage capacities. 6V(r),dp] with
For comparison, keeping the formalism ¢6], for
threshold-linear networks with hebbian learning rule, encod- f dr 8V(r)=0. (52
ing memory patterngr;};_, n With sparsitya defined as M
((r))? We obtain the following equations:
ap=—"—
(e NOV(r) =g (Uo(1))
(for binary patterns this is equal to the fraction of active , , .
units), and for smalla, the capacity is given by X fMdr K(r=r")éV(r') |+ga(ug(r))ép,
1 (53
~—— 49
“P” @, In(1/a,) 49

The apparent paradoffarger capacity with sparser pat- Ap=

terns, smaller with sparser charis solved as one recognizes
that each chart can be seen as a collection of configurations 1 )
of activity relative to different points in space covering, as in X p+ 59“| M[((K )}JMdr Uo(r)&V(r), (54)
a tiling, the whole environment. Each configuration is
roughly equivalent to a pattern in the usual sense. Intuitivelyyhere
and in a sense that will be made clearer below, a chart is
equivalent, in terms of “use of synaptic resources,” to a _4[volr)
number proportional t@,;]l of patterns of sparsita,, . Uo(r) =N (T)

The proportionality coefficient or, equivalently, the dis-
tance at which different configurations are to be considered Inserting Eq.(53) in Eq. (52):
to establish a correct analogy, will be dealt with in Appendix
D. These considerations and the comparison of Ej8.and , , ,
(49) make clear thatr, is the exact analog of the pattern JMdr (D(UO(r))[ J'Mdr K(r=r)év(r )}
autoassociatorsy, . Sp=—

1
1= g0alMIk | ar wran)

| ar otwo(ry)

C. Inhibition independent stability M (55)
The dynamical stability of the solutions of E@L2) is in

general determined by the precise functional form chosen for Equation(55) can be inserted again in E3), obtaining

the inhibition, which we assumed to be a function of thea closed integral equation V. Unfortunately, this equation

average overall activity in the net. Nevertheless, there ares very difficult to solve, but we can derive a stability condi-

fluctuation modes that leave the average activity unalteredion by making an ansatz in the form of the eigenfunction

Stability against these modes is therefore unaffected by théV(r). More precisely, let us concentrate on the 1D case.

inhibition and may be checked already for a general modelWe look for solutions with even symmetfywe know there

Let us consider a “synchronous” dynamics, that is, all themust be an eigenfunction with odd symmetry, and an eigen-

neurons are updated simultaneously at each time step. Thalue equal to 1, corresponding to a coherent displacement

evolution operator for the variablé&r,t) andp(t) is of the activity peak This kind of solution corresponds to
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spreading and shrinking of the activity peak. Let us assum&here, again,

that the even eigenfunction with the highest eigenvathe

most unstablehas only two node$an even eigenfunction Ez((li(r—r’))
must have at least two nodes because of(Bg)], atry and '
—ro. Let us take the sign of the eigenfunctié(r) such

that 8V(0)>0. From Egs(52) and (55) we see that The free-energy calculation is sketched in Appendix C.
Again, the stable states of the system are governed by mean-
8p<0. field equations. The mean-field equati@@1l6) is an integral
equation in the functional order parameidr), the average
Now, from Eq.(54) space profile of activity.
1 If we are able to solve EqC16) and findv’(r) as a
A=[1-Zga|M |<<K2>>j dr Ug(r)ve(r) function ofw andg’, by subst_ltutmg Eq_s(.Cl?) and(C18 in
2 M Eg. (C11) we have an equation that gives us the valuexof
1 NG corresponding to that pailg(,w). a. is then the maximum
+ §9a|M|<<K2>>f dr ue(r) . (56) of « over the p035|ble-vz.ilues ofg(,w). - o
M P To solve Eq.(C16), it is easy to verify that ifv(r) is a
. solution of
and we recognize that
oV(r ~ , P b~ A
[ ar ugn 75 <o 5(n=g N(f AR5 Hw| (6D
M op M
Thus, with
A<1 r (57
2 v‘v=w—Ef dro(r),
M
with
that is, the same equations as E@2) and (B3), then
D= galMI(KD) [ drugnogn). (59

_ , B(r)=J dr'[L(r—r")—LJo(r")
Thus, if the ansatz we formulated holds, we have a stabil- M

ity conditionI">0, which is found to be fulfilled for all the
solutions we found relative to maximal storage capacity.

L . : is a solution of Eq(C16). v can therefore be interpreted as
This implies that the storage capacity result is not affected b¥he average activity profile, apart from a constant. Equation
instability of the solutions, provided of course that an appro !

priate form for inhibition is chosen. This stability result is (61) can be solved with the same procedure used for Eq.

also related to the correlation in the static noise for two so-(42)’ and the maximum value af can be found by maxi-

lutions centered at different pfc’s, as we will show in Appen-Mizing overg’ andw. _ _ _
dix D. The results for 1D and 2D environment are depicted in

Figs. 1 and Zlower curve$. As we may expect from pattern
autoassociator theory, the capacity is much lower than for
the diluted model, due to an increased interference between
different charts.. As the sparsigy~1/M| gets smaller, the
capacities of the two models get closer, both being propor-
tional to 1/InKy4|M|). Reducing the sparsity parameter of
The treatment of the model with the fully connected net-space representations has therefore the effect of minimizing
work and a kerneK for connection weights satisfying the the difference between nets with sparse and full connectivity.
condition (31) will use the replica trick to average over the
disorder(the realizations of the’'s) and will eventually lead
to a nonlinear integral equation for the average activity pro-
file in the space of the “condensed map” very similar to Eq. A possible extension of this treatment is inspired from the
(42). Let the Hamiltonian of the system be experimental finding that, in general, not all the cells have
L v place cells in a given environment. Referefté], e.g., re-
c [ ported that~28-45% of pyramidal cells of CA1 have a
H=- Ei,j(z;i) ‘]iJViVi_NB( Z W) —Ei: %: g(ﬂ)'ri(mvi’ place field in a certain environment. We would like to see
(59 how this fact could affect the performance of the multichart
autoassociator. It is then natural to introduce a new sparsity
where now the]icj are given by Eq(24) with a generic kernel parameter, thehart sparsity a indicating the fraction of
cells which participate in a chart. We will show that, for the

K(r—r")=K(r— r'—K, (60) capacity calculatioragl “sparse” charts are equivalent to a

It can also be shown that by taking the—0 limit (i.e.,
the single chart cageone always had >0 since it is
vo(r)=0 whenug(r)<O0.

D. The fully connected model

E. Sparser maps
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10° : , this y value is approximately equivalent to tlyevalue we
would get for “full” charts of size|M|/a;.

Inserting Eqs(65) and(66) in Eq. (46), one finds, for the
maximal capacity:

1
ém“ L | QX (sparse chans™ m (67)

As we anticipated, one may interpret this result as fol-
lows: the capacity is the same as if we had takae;r'l1
“sparse” charts, including~N cells, and put them side by
side to form one single “full” chart. If we have started with
aC “sparse” charts we now hava,aC “full charts.” From

: ., Ea (46) we see that we can store at meg{s charngC full

_2
10 10 har n
i charts and

10”

107°

FIG. 5. The maximum stored information per synapse, as a

function of 1/M|. 1

Qcfull chartg™ In(Ky[M|/a;)’

single “full” chart, of size a; *. We will present the argu- and this explains Eq67). Therefore, this network ias ef-
ment for the diluted case; the fully connected case is comficientin terms of spatial information storage as the one op-
pletely analogous. erating with full charts.

Let m/ be equal to 1 if cell participates in chart, that
is, with probabilitya.. Thus, the synaptic coupling; will

read IV. INFORMATION STORAGE

Like a pattern autoassociator, the chart autoassociator is
an information storing network. The cognitive role of such a
module could be to provide a spatial context for information

Let us consider a solution with one condensed map: cellsf a nonspatial nature contained in other modules, which
participating with pfc inr in that map will have a space- connect with the multichart module. Each chart represents a
related signal-to-noise ratio different spatial organization, possibly related to a different

environmental/behavioral condition. Within each chart, a cell

is bound to a particular position in space, thus being the

v(l’)zg/\/( f dr'K(r—r"o(r')+w (63)  means for attaching some piece of knowledge to a particular

point in space, through intermodule connections. To give a

very extreme, unrealistic, but perhaps useful, example, let us
assume that each cell encodes a particular discrete item, or

|M| K(r(,u)_r(,u))mMmM (62)
a:N i i P

p
Jj=2
u=1

for all the neuronsot participating in the condensed map we

will have the memory of some events happened somewhere in the en-
vironment, in “grandmother cell” fashion, encoding “the
v=Mw). (64  grandmother sitting in the armchair in the dining room.” The
encoding of the “grandmother” may be accomplished by
The noise will have a variance some set of afferents from other modules. The multichart

associator can then attach a spatial location to that memory
IM] )2 of the “grandmother.” The spatial location encoded is ide-
—) ((Kz(r—rf‘)), (65) ally represented for each cell by its pfc.
ac In this sense, the information encoded in the network,
that isa. times the value we would get for the same number\"’h.i‘:h.Can b.e extra(_:ted by measures of th(_a activity of Fhe
of “full” charts with size |[M|/a., and now units, is th_e information about the spatial tuning of the units,
that is their pfc’s.

To restate this concept in a formal way, we look for

p*=aacy

y=p°g’ acf i/\/l(fdr’K(r—r’)v(r’Hw
MM 1

l=lim e 2 2 1V her 9 (69)

+(1—ac)/\/t(w)]. (66) e

. _ that is, the information per synapse that can be extracted
By comparing Eqs(44) and (66), and remembering that from S different observations of activity of the cells with the
for r far from the activity peak (r) ~AN{(w), we realize that animal in S different positions, and the system in activity
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states related to chagt. This quantity does not diverge as the spread of connections. It is shown that this parameter
S—oo, since repeated observations of activity with the ani-plays a very similar role as sparsity for pattern autoassocia-
mal in nearby positions do not yield independent informa-tors. In the multichart case, moreover, the effective sparsity
tion, because of correlations between activity configurationsof the stable configurationss determined also by the value
correlations that decrease with the distance at which the corof the gain parametey, as shown analytically for the noise-
figurations are sampled. less case. Nevertheless, the capacity of the network depends

The full calculation of this quantity involves a functional on the spread of connection parametgeky/|M| through a
integration over the distribution of noise affecting cell activ- relation which is the exact analog of the relation between
ity as the animal is moving and exploring the whole environ-sparsity and capacity for the pattern autoassociator, at least in
ment. In Appendix D we suggest a procedure to approximat¢he very sparse limit.

this quantity based on an “information correlation length” We have only considered here the capacity problem for
such that samples corresponding to animal positions at a diene form of the connection kernel, although the treatment we
tancel, yield approximately independent information. propose is applicable, at least, to the other kernels considered

I is the amount of spatial information which is stored in for the noiseless case. Our hypothesis is that a similar law for
the module. It is the exact analog of the stored informatiorsparsity is to be found as E47), at least in the high spar-
for pattern autoassociatof§]. As for storage capacity, it is sity limit, for more general forms of the kernel.
to be found numerically, by maximization overandg. We have then shown that the capacity scales in such a

As for the capacity, one can find the solution that maxi-way that the information stored is not changed when only a
mizeslg. The resultingl ., is a function of the size of the fraction of the cells participate in each chart. In this case the
relative spread of connectioas=1/|M|, and it amounts to a firing of a cell carries information not only about the position
fraction of bit per synapsésee Fig. 5. of its pfc in the chart environment, but also abautich

As with pattern autoassociators, the information storedenvironment the cell has a place field in. This information
increases with sparser representations. The increase is madds up, so that &/ charts can be assembled in a single
marked for the fully connected network. For very sparse replarger chart of size &/ times larger.
resentations the performance of the fully connected model We have introduced a definition of stored information for
approaches the extreme dilution limit. the multichart memory network, which measures the number

of effective different locations which can be discriminated by
such a net: representations of places at a distance less than

V. DISCUSSION are confused, because of the finite width of the activity
peaks, and because of the static noise.

We have studied the multichart threshold linear associator 1 does not vary much whejM| varies. This is consistent
as a spatial information encoding and storage module. with the fact that the storage capacity is well fitted by Eq.
have given the solution for the dot-product kernel model,(47) With k4~4.5.1, turns out to be~3.5 for the 1D model,
then introduced a formalism in which the generic kernelWith the arbitrary value fof of 0.95.1; is therefore similar to
problem is soluble. the “radius” of the activity peak which should correspond to

The second treatment has the advantage of providing &€ “pattern” in the parallel between the chart autoassociator
form for the average activity peak profile, which can be com-and the pattern autoassociator. _
pared with the experimental datsee, for example[9], It was not possible to carry over the calculatiorr of and
Fig. 1). I, in the 2D model as it turned out to be too computationally

We have shown that the nonlinear integral mean-fielgdemanding. Therefore, we are not able to show the values of
equation[Eq. (42)] can be solved at least for one class of the storable information. The fact that the storage capacity
connection kernel& (r—r'). follows Eq. (47)_ a!so in this case is an indirect hint of a

The storage capacity for both models has been found. WBehavior very similar to what is found in 1D.
note that the capacity for the dot-product model is compat-
ible with the wide kernel(nonsparsglimit of the generic
model in one and two dimensions in the fully connected and APPENDIX A: REPLICA-SYMMETRIC FREE ENERGY
in the diluted condition. FOR THE “DOT PRODUCT” KERNEL MODEL

The generic kernel treatment makes it possible to manipu-
late the most relevant parameter for storage efficiency, i.e., The replica symmetry free energy reads

f=—T<<f Dz In Tr(h,h2)>>—lz IXOT2—B(x)— D (|$7[x+8 7 Ix(@l
20, (o0

BY1
1-ToB(Yo— Y1)

=S OOty gyt ad
oYotriy:i+t

(o 2B A1)

In[1-ToB(Yo—Y1)]—
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very much like Eq(19) in 6 and with the same meaning for
symbols, except that the population veciéf)' plays the

role of the overlapx?, the vector Lagrange multipliet®:!

appears instead of its scalar countergértand the dimen-

sionality d appears multiplying the last terrh.andh, are

h=—t— >t yl—z(—2Tr)¥*, (A2
(o),l

h2=r1—ro. (A3)

{(...)) means averaging over the distribution of pfajsT

is the noise level in the thermodynamic analydig.is de-

fined here as

(- PN (- gy = t' 1, (A4)

and it is found to be equal to 1/2 in 1D and to 1 for the 2D

torus.

The saddle-point equations can be found from this equa-
tion, andt andt(”"' can be eliminated, in the same way as in
[6]. Carrying on the calculation th€=0 equations eventu-
ally reduce to two equations in the two variabl@sthe case

of a single “condensed” map

b(x)— 6

:[(X/)o ], (A5)
|

vi= (x :g). (AB)

Take, for simplicity,|v!|=v (while the direction is set by

V'cd). The two equations read

E (w,v)=(A;+ 6A,)2— aA;=0, (A7)
E =(A;+ oA L A A,=0
2AAW,V)v=(A1+ 5Az) era— 2| —aAy=0,
(A8)
where §=|s!|/|x!| is the relative importance of the external
field and
1 +
Ay(w,v)=— <<v'-17'f Dzl w+ >, v'-n'—z)>>
veT T

().

o3|

1 +
Ap(W,v)=— <<v<1>-1,<1>J Dz

UTO

When the quenched average on tiie is performedA,,
A,, A; reduce to(for the d-dimensional torug 9):

A1(W,v) fde'( cosa)
1l (27T)dvT0 )
X[[w+v, cost —vTo|P| w+o, cose')
| |
+lwHo cose')a W+v Y, cosa') ,
| |
(A12)
Ay(w, :—f da'( cosé'
2(Whv) (27T)dl}To §|:
D cose')CD e cos&')
| |

+lw+ovY, cosa')a w+ov D cosH'H,
| |
(A13)
2
Az(W,v)= dé'| 1+ | w+v Y, cosa') }
]
X®[w+vD, cosd |+ wrov D, coso')
T ]
ol wtvD, cosa'), (A14)
T
where
x dz 2
d(x =f —e 72 A15
(x) = (A15)
—x2/2
og(X)= . Al6
(x) N (A16)

APPENDIX B: GENERIC KERNEL, EXTREME DILUTION

Let us consider the one-dimensional case first, and con-
sider the kernel

A7, ' 2 — [r—r’| 2
K(r—r")=K(r—r )—ﬁ e _W (B1)

(A10)  Equation(42) can be written
+ 2 R R
A3(w,u)=<<J Dz| w+ D, v'-n'—z) v(r)=g/\<fdr’K(r—r’)v(r’)+w), (B2)
|
(A11)
where
Dz is the Gaussian measure#® Y% 7"2dz The + sign X
on the integral means that integration extremes are chosen ~ _f Voo
such that w+3 V- ' —2)>0. w=w M| dro(r’) (B3)
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For the purpose of finding., maximizing with respect tov 25 T '
is equivalent to maximizing with respect vo.
To solve Eq.(42), the transformation 20|
v(r)
u(r)=N‘1(—) (B4)
g 15..
is used, which results in g
10f
u(r):gf dr/K(r—r")NTu(r)]+w. (B5)
. - . 5f
By differentiating twice we get
" ~ d 0 L L '
u"(r)=—=2gNu(n]+u(r)—w=— - Ufu(m], % 4 3 =
(B6)
FIG. 6. The “potential” functionZ/(u) defined by Eq(B7) and
where entering the differential equation E¢B6). Solutions withu’(0)
" =0 andu(0)=ug, with uy,,<Uy<u* are oscillating. The solution
U= f du’(2gMu’)—u’ +w). (B7) with ug=u* is the one we seek, asymptotically approachipg, as
[—oo,

The differential equatioriB6) is locally equivalent to the
nonlinear integral equatioriB5). Equation (B6) must be u(r) = Upmin, (B12
solved numerically. As in the single-map case, not all the
solutions of the differential equatiofB6) are a solution of
the integral equatioB5). Solutions of Eq(B6) are a solu-
tion of Eq. (B5), strictly speaking, only in the cadd =R.

which obviously will not correspond to space-related activ-
ity. The solution corresponding to the single activity peak

. . . can only be the one withp=u*. It tends asymptotically to
Nevertheless, we force the equivalence since, also in the caa%ax' This solution can be found numerically and inserted in

of I|m|ted environments, Wlth'perIOdIC boundary condlgons,Eq. (46) to find the value ofa associated with the pair
possible pathologies are not important for solutions with ac-" "'« , ) -
tivity concentrated far from the boundaries. (g,w). The solution will only be present for values wffor

In order to classify the solutions of E€B6) it is useful to  Which ¢(u) has the extremal points;a andumiy, that is
study the “potential function’t{. If w is negative and large
enough in absolute valug/{(u) has a maximum and a mini- W<W* | (B13)
mum at the two roots of equation

d - wherew* is equal to—2gA{(u*)+u* andu* is the root of
oY (W=29Mu)—u+w=0, B8 the equation:
or, in terms ofv 1
. O(u)= 5= (B14
v=gM2v+w), (B9) 29

corrgsponding to constant §olutions of E@)' We look for. .._obtained by derivating twic#, and this shows that E4B5)
solutions representing a single, symmetric peak of aCt'V'tycannot have solutions fay<1/2, as in the single-map case.

centered |.nr=O. We therefore ne_e(_j. to solv_e_ the. Cauchy In the two-dimensional case, we can consider the kernel
problem given by Eq(B6) with the initial conditions:

u(0) =y, (B10) . 2
K(r—r’)zK(r—r’)—W, (B1Y
u’(0)=0. (B11

From Fig. 6 it is clear that iug>u* the solution will
escape to-« for r tending to infinity. This will correspond
to v tending asymptotically to O, and this solution cannot be
a solution for the integral equatiof#2) as the asymptotic - 2
value must be a root of E4B9). K(p)= 1402

X . - p

The solutions of the problem withy<u* are periodic,
corresponding to multiple peaks of activity, and they are dis-
carded as unstable with the same arguments holding for thEhe solution is worked out in the same way with the trans-
single map case. There is also the constant solution formation (B4) and application of the Laplacian. If we con-

whereK is the kernel having the Fourier transform

(B16)
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sider solutions with circular symmetry and pass to polar co-

ordinates £, ¢), the equation for reads

1
u”(r)+ FU’(Y>= —2gN(u(r))+u(r)—w. (B17)

F. P. BATTAGLIA AND A. TREVES

PRE 58

xﬂ(r*>=$2 [L(r=r)]V, (C2)

in terms of which the interaction part of the Hamiltoni&®)
reads

We still have a single peak solution which tends asymptotl—

cally to up.y, but in this case we cannot rely on thifunc-
tion argument to find the initial condition at=0, which has
to be found numerically.

APPENDIX C: REPLICA FREE-ENERGY CALCULATION
FOR THE GENERIC KERNEL

Again we will consider an environmemd with periodic

boundary conditions. We assume that there exists a kérnel

such that

f dr’L(r—r")L(r"—r")=|M|K(r—r"). (Cy

Instead of the vector order paramet#rthat we used for
the dot-product kernel cager of the scalar overlap* of
[6]), we can use the functional order parameter

—Z > ViV,

[ EAl

:ﬂNE 2 2 [K(rt=r)—KIV,V,

—%M'[K(m—m Vi

1 . M _
ZEN% fdr[xﬂ(r)]z— %[K(O)—K]Z V2,

(C3

Introducing the “square root” kerndl allows us to perform

the standard Gaussian transformation manipulation and to
carry out the mean-field free-energy calculation in the
replica-symmetry approximation:

f=—T<<J Dz In Tr(h,h2)>>—%;fmdr[x"(r)]z—@[K(O)—K]yOJrB(X)

—2 j dr t7(r)x?(r)—tx—rqyp+rqiy;s+
T M

%Ep(ln[l—n(p)ﬁ(yo—yl)]—

BY1
1-To(p)B(Yo—

y1)/’ €4

where nowTy(p) is the Fourier transform of the kernel where now the+ sign on the integral means that the limits

IM|K
To(p)=|M|JMdr e PK(r). (C5)
We now have
X)+ D f dr’x7(r")[L(r=r")—L]
o M
—z(—2tr )2, (C6)
hy,=—rg+r;. (C7)

The T=0 mean-field equations are much like[#] apart
from thex?(r) equation which reads

x“(r)=g'<<[L(r”—r'>—f]
><J+D2U dr’[L(r"—r’)—f]x‘T(r’)
M

“ox-0-pa) |

(C8

of integration overz are chosen such that
f dr/[L(r°=r")—L]x°(r’)+b(x)— 6>0. (C9)

g’ is arenormalized gain, which takes into account the effect
of static noise, defined by

(g") '=g" —aZ TP o (€10
whereV is given by Eq.(C18).
The noise variancg? is given by
2
p?=—2Tr=a), M, (C11)
P [1-To(p)¥]?
where
yo=<g'>2<<f Dz| | arteie-m-0
2
><x"(r’)+b(x)—6] >> (C12
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and Vi=[hi—pz;]"
\I_f=g’< < j+ Dz> > (C13 lie ;23 activity of a cell measured while the rat is in position

We now pass to the rescaled variables V,=[h,—pz,]"
o(r)= X7(r) (C14 be the activity of the same cell while the rat is in position 2.
vim T The two noise variables are distributed according to a

joint bivariate Gaussian distribution:

(C1H 1

21,2y)= ——F——
p(l 2) 2’”_\/1_—"52

b(x)
w=——,

obtaining

1
7 Xexp — ———=—(22+ 22— 2r 1,2,2,) | .
UU(T)Zg'fMdF"[L(r"—r)—L] F{ 2(1_@2)( 1742 122123)

(D2)
x| w+ fMdr’[L(r"—r’)— L]u"(r)), The correlation coefficient,, is a function of the distance
e, implicitly defined through the equation
(C16
p?r (€)= a|M[((K?))y1x(€), (D3)
Yo _ N2 dr?
E_(g ) M| wherey;, is defined as
_ 1
X M| wt fMdr'[L(r“—r'>—L]v”<r> : Yad )= 2 (ViVia) (D4)
(C17) and assuming periodic boundary conditions:
\I_f:f E(I) W+J' dr'[L(r=r")—L]v’(r) |. s dr [+
m|M]| M yid€)=pg ™ Dz, (D5)
(C18
dr, ! !
APPENDIX D: GENERIC KERNEL: X JWKU—V Jo(r')+w=2z,
STORABLE INFORMATION CALCULATION
i i ' ; dr”
First, the information per synapse we get from a single X f—K(r—r”)v(r’H— e)+w—zz> (D6)
observation of activity, with the animal in a certain position M|

times the number of stored charts is

or
dr u(r) dz 2
im0 o (e
! M| J-= 27 ylz(e)zngzf WJ’ Dz u(r)u(r+e), (D7)
e 212 whereu(r) is defined by Eq(B4). The integration measure

X for the noise variable is defined as

In
f (dr’/|M |) e~ [z—u(r)+u(r’)2]/2

+[1—=¢(u(r))] f++D212:f d2.d2p(20.2,).
[1—¢(u(r))] u(r)—z;>0u(r +€)—2,>0
XIn . (DY) -
f (ar/Mp L= o] Inserting Eq.(D7) in Eq. (D3) yields

Next, we wish to calculate the joint information from two
measures of activity, from the same cells, from all charts,
while the rat is in two different locations, at a distance
These two measures are correlated random variables: let where

r12=a|M|((K2>)92J’ dr Q[u(r),u(r+e),ry,], (D9)
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FIG. 7. Thery, function plotted as a function of the distance  FIG. 8. Thel, function plotted as a function of the distance
between the two pfc'se in the |M|=30 case. between the two pfc’se in the [M|=30 case. Note thdt, with
f=0.95[see Eq.(D17)] would be approximately 3.5. This is seen
not to change much whei| varies(not shown.

++
Q(X:Y-rlz):j DziAx—21)(y—2,). P
Ep(rlzﬂ 1,52 0)

Equation(D9) can be solved numerically. An example is dr
provided in Fig. 7, but a few features can be explored ana- :a<<K2>>92J —®(u(r))-1
lytically, in the neighborhood o&€=0.r;,=1,e=0 is a so- M
lution, but now consider what happens wheincreases.

The derivatives of =f|dvr|<b(U(r))(J|c:A—r|M(U(f))

-1
-1. (D13

From Eq.(D12) it turns out that when the derivative in Eq.
(D13) is greater than zero, the solutiog,=1 disappears as

dr - R
D(r12,6)=a<<K2>>g2J Wg[u(r),u(r+e),rlﬂ—r12 ?hn:i moves frone=1, but another solution is still present so
(D10
lim r12(6)<1. (D14)
e—0"

with respect toe andr, must be taken into consideration. .
One has Note that the condition

J
—D(r;,—1,6=0)>0

J . .
ED(QZ: 1,e=0) is equivalent to

= a((K?))g? r:ga|M|<<K2>>fMdru(r)v(r)<o, (D15)

dr o and the quantitd” enters in the stability analysis consider-
Xf——Q[x:u(r),y=u(r+e),1]u’(r)=0, ations we sketched in Sec. Ill C, at least for the 1D case.

IM][ gy Solutions withI'>0 are stable against inhibition orthogonal
(D11 fluctuations, so that it is likely that the possible pathology

implied by Eq.(D14) reflects an instability of the solution.
We have always found numerically that for the solution cor-

P responding to the maximal storage capacity and information,
—D(r,=1,e=0)<0, (012 I'>0. o S
de Once we know the joint probability distribution fag and

Z,, we can calculate the information we can extract about the
pfc of a cell from two measurements of activity, while the rat
and is standing in two positions at a distaneefrom all charts:
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l2(€)= I:Zf |(:/|—r|[f++D212 —

fﬂex ! ——————[(u(r)—u(r)+z)?+ u(r' + €y —u(r+ )+ z,)?
mIM| 2(1-r2)

2, 2
(z1+25—2r1,2,25)

2(1-r2,)

—In

—=2r,(u(r")y—u(r)+z)u(r' +e) —u(r+e+2z)]

4 n ex Z +Z 10212
12| Zé>u(l’ 6)2 2(] rlz) 1 2 124142

—In de dzyex ! ————[(U(r")—u(r)+z)?+ u(r' +e) —u(r + e) +z5)?
MM zp>u + o ? 2(1_ i) 2

J

| f d21d22 l ( /2+ 12 2 ’ /)
n ——eXp —————(Z VA RTYAVA
Zun Z>utr+ o 2m1—r2, 2(1-r2,) t 7 T

= 2r 1 (u(r’)—u(r)+z)u(r’ +e) —u(r+e +2z5)]

+f Dz,

! f o dndz - [u(r)—u(r)+2z)?+U(r' + e —u(r+ e +2,)?
—In — exp — u(r’)y—u(r)+z u(r —u(r z
MM 2w zpue o 2117, 2(1-r2) : < o
—2r12(u(r’)—u(r)+Z£)(u(r’+e)—u(r+e)+zé)]))”. (D16)
|
The minus signs {) beside the integration signs mean L,b—1,=fly, (D17

that, respectively, the first, or the second condition determin-

ing the integration intervals in EGD8) is reversed. The first wheref is a fixed fraction, say 0.95. We may say that mea-

term in the sum accounts for the contribution coming fromsurements of activity with the rat in two positions at a dis-

measurement in which both activity values are positive. Théancel, give independent information.

second term is the contribution from measurements in which This allows us to define as trstored information § the

one value is zero and the other is positive. The third termrguantity

comes from measurements in which both values are zero.

Fore=0, I,=14, since the two measures are identical. =] M (D18
For largee one hasl,~2l4, because the noise decorre- s '

lates and because in general the two measures will give non-

zero results in distinct regions of the environment. The bethat is, sampling the activity of a chIM|/Id times, with the

havior of |, as a function ofe is exemplified in Fig. 8. We animal spanning a lattice with sid¢, we may effectively

define as “information correlation length” the vallgof ¢ = add up the information amounts we get from each single

for which sample, as if they were independent.
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