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Attractor neural networks storing multiple space representations:
A model for hippocampal place fields

F. P. Battaglia and A. Treves
Neuroscience, SISSA Interactional School for Advanced Studies, Via Beirut 2-4, 34014 Trieste, Italy

~Received 8 July 1998!

A recurrent neural network model storing multiple spatial maps, or ‘‘charts,’’ is analyzed. A network of this
type has been suggested as a model for the origin of place cells in the hippocampus of rodents. The extremely
diluted and fully connected limits are studied, and the storage capacity and the information capacity are found.
The important parameters determining the performance of the network are thesparsityof the spatial represen-
tations and the degree of connectivity, as found already for the storage of individual memory patterns in the
general theory of autoassociative networks. Such results suggest a quantitative parallel between theories of
hippocampal function in different animal species, such as primates~episodic memory! and rodents~memory
for space!. @S1063-651X~98!09112-0#

PACS number~s!: 87.10.1e, 05.90.1m
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I. INTRODUCTION

Knowledge of space is one of the main objects of com
tation by the brain. It includes the organization of inform
tion of many kinds and many origins~memory, the different
sensory channels, and so on! into mental constructs, i.e.
maps, which retain a geometrical nature and correspond
our perception of the outside world.

Every animal species appears to have specialized sys
for spatial knowledge in some region of the brain, more
less well developed and capable of performing sophistica
computations. For rodents there is a large amount of exp
mental evidence that the hippocampus, a brain region fu
tionally situated at the end of all the sensory streams
involved in spatial processing. Many hippocampal cells
hibit place related firing, that is, they fire when the anima
in a given restricted region of the environment~the ‘‘place
field’’ !, so that they contain a representation of the posit
of the animal in space.

The hippocampus, one of the most widely studied br
structures, shares the same gross anatomical features a
mammalian species; nevertheless, it is known to have dif
ent functional correlates, for example, in primates and
mans ~where it is believed to be involved inepisodic
memory, roughly, memory of events! and in rodents, in
which it is mainly associated with spatial representation.

One relevant feature of the hippocampus which is ma
tained across species is a region, named CA3, characte
by massive intrinsic recurrent connections. It was appea
for many theorists to model this region as anautoassociative
memorystoring information in its intrinsic synaptic structur
information which can be retrieved from small cues
means of an attractor dynamics, and which is represente
the form of activity configurations.

Within the episodic memory framework, each attrac
configuration of activity is the internal representation
some memory item. The CA3 autoassociative network
be seen as the heart of the hippocampal system, conta
the very complex, intermodal representations peculiar to
sodic memory. Autoassociative, or attractor neural netwo
PRE 581063-651X/98/58~6!/7738~16!/$15.00
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have been extensively studied with the tools of statisti
physics@1#. Efficiency measures, like the number of storab
memory items or the quality of retrieval, can be comput
for any appropriately defined formal model. An intensi
effort was performed to embed in these idealized mod
more and more elements of biological realism, trying to ca
ture the relevant anatomical and functional features affec
the performance of the network. It was then found tha
theory of the hippocampus~or, more precisely, CA3! as an
autoassociative network has as its fundamental parame
the degree of intrinsic connectivity, i.e., the average num
of units which send connections to a given unit, and
sparsityof the representations, roughly the fraction of un
which are active in one representation. These parame
have biological correlates that are measurable with anato
cal and neurophysiological techniques.

Spatial processing, as it is performed by the rodent h
pocampus, also involves memory of some kind; recent
perimental evidence supports the idea that spatially rela
firing is not driven exclusively by sensory inputs but al
reflects some internal representation of the explored envi
ment. First, place fields are present and stable also in
dark, and in conditions of deprived sensory experience. S
ond, completely different arrangements of place fields
found in different environments or even in the same envir
ment in different behavioral conditions.

These findings have led to the hypothesis that CA3~like,
perhaps, other brain regions with dense connectivity! stores
‘‘charts,’’ representations of environments in the form of a
stract manifolds, on which each neuron corresponds t
point, that is the center of its place field. Place fields arise
a result of an attractor dynamics, whose stable states
‘‘activity peaks’’ centered, in the chart space, at the anima
position. It is important to note that the localization of ea
neuron on a chart does not appear to be related to its phy
location in the neural tissue.

The positions of place fields are encoded by the recur
connections, and it is possible to store many different ch
in the same synaptic structure, just as many different patte
are stored in a Hopfield net, for example, and different
tivity peaks can be successively evoked by appropriate
7738 © 1998 The American Physical Society
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puts, just as it happens with autoassociative memories.
It is interesting to address the issue of whether an epis

memory network and the ‘‘spatial multichart’’ memory ne
work share the same functional constraints, so that a biol
cal brain module capable of performing one of the tasks
also adequate for the other. Here we present a statistical
chanics analysis of the multichart network, focusing on
parallel with autoassociative memory in the usual~episodic
memory! sense. It is found that the performances of the
two networks are governed by very similar laws, if the p
allel between them is drawn in the appropriate way.

In Sec. II the case of a single attractor chart stored
studied, then in Sec. III the case of multiple stored chart
analyzed and the storage capacity is found, first for a sim
fied model and then for a more complex model which ma
it possible to address the issue of sparsity of representat
In Sec. IV the storable information in a multichart network
calculated, making more precise the sense in which suc
network is a store of information, and completing the para
with autoassociative memories.

II. THE SINGLE MAP NETWORK

As a first step, we consider the case of a single attra
map encoded in the synaptic structure, as was propose
@2#. We focus here on the shape and properties of the att
tor states, as a useful comparison for the following treatm
of the multiple charts case.

The neurons are modeled as threshold linear units, w
firing rate:

Vi5g@hi2u#15g~hi2u!Q~hi2u!, ~1!

i.e., equal to zero if the content of the square bracket
negative.h represents the synaptic input current, comi
from other cells in the same module,u is a firing threshold,
which may incorporate the effect of a subtractive inhibito
input, common to all the cells, as it will be illustrated lat
on. The connectivity within the module is shaped by t
selectivity of the units. Ifr i is the position of the center o
the place field of theith cell in a manifoldM of size uM u,
corresponding to the environment, the connection betw
cells i and j may be expressed as

Ji j 5
uM u
N

K~ ur i2r j u!, ~2!

whereK is a monotone decreasing function of its argume
The synaptic input to theith cell is therefore given by

hi5(
j

Ji j Vj5(
j

uM u
N

K~ ur i2r j u!Vj . ~3!

If the numberN of cells is large, and the place field
centers~pfc! are homogeneously distributed over the en
ronmentM ~be it one or two dimensional!, we can replace
the sum over the indexj with an integration over the coor
dinates of the pfc’s:

h~r !5E
M

dr 8K~ ur2r 8u!V~r 8!. ~4!
ic
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Note that the normalization in Eq.~2! is chosen so as to
keep the synaptic input to a given unit fixed whenuM u varies
and the number of units is kept fixed, that is, the density
pfc’s N/uM u varies~the uM u factor will then compensate fo
the fewer input units within the range of substantialK
strength!. A fixed-point activity configuration must have th
form

V~r !5gF E
M

dr 8K~ ur2r 8u!V~r !82uG1

. ~5!

We could write Eq.~5! as

V~r !5H gF E
V

dr 8K~ ur2r 8u!V~r 8!2uG rPV

0, r¹V,

~6!

whereV is a domain for which there exists a solution of E
~2! that is zero on the boundary.

If only solutions for whichV is a convex domain are
considered, the fact thatV(r ) is zero on]V will ensure that
units with pfc’s outsideV are under threshold, therefor
their activity is zero and solutions of Eq.~6! are guaranteed
to be solutions of Eq.~5!. The size and the shape of th
domainV in which activity is different from zero is deter
mined by Eq.~2!. As a first remark, we notice that it i
independent of the value of the thresholdu. In fact, if Vu is
a solution of Eq.~6! with thresholdu, given the linearity of
Eq. ~6! within V,

Vu85
u8

u
Vu

will be a solution of the same equation withu8 instead ofu,
with the same null boundary conditions onV. Rescaling the
threshold will then have the effect of rescaling the activ
configuration by the same coefficient. This means that s
tractive inhibition cannot shape, e.g., shrink or enlarge, t
stable configuration, and therefore it is not relevant fo
good part of the subsequent analysis. Some form of inh
tion is nevertheless necessary to prevent the activity fr
exploding. Moreover, there are fluctuation modes which c
not be controlled by overall inhibition as they leave the to
average activity constant. They will be treated in Sec. III
It is found that, at least in the one-dimensional~1D! case,
these modes do not affect stability in the single chart cas

In the absence of an external input, any solution can b
most marginally stable, because a translation of the solu
is again a solution of Eq.~6!. An external, ‘‘symmetry break-
ing’’ input, taken as small when compared to the contrib
tion of recurrent synapses, is therefore implicit in the follo
ing analysis.

A. The one-dimensional case

The case of a recurrent network whose attractors refl
the geometry of a one-dimensional manifold, besides bein
conceptual first step in approaching the two-dimensio
case, is relevant by itself, for example, in modeling oth
brain systems showing direction selectivity, e.g., in head
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rection cells @3,4#, and also for place fields on one
dimensional environments@5#.

In this case Eq.~6! reads

V~r !5gS E
2R

R

K~ ur 2r 8u!V~r 8!2u D ,

V~R!5V~2R!50. ~7!

For several specific forms of the kernelK it is possible to
solve explicitly Eq.~7!, yielding interesting conclusions. Fo
example, if

K~ ur 2r 8u!5e2ur 2r 8u, ~8!

~see, also,@2#! differentiating Eq.~7! twice yields

V9~r !52g2V~r !1gu, ~9!

whereg5A2g21.
Solutions vanishing at2R and R ~and not vanishing in

] 2R,R@), have the form

V~r !5A cos~gr !1
gu

2g21
~10!

with

A52
gu

~2g21!cos~gR!
. ~11!

The value ofR for which Eq.~10! is a solution of Eq.~7!
is determined by the integral equation itself: for example,
evaluatingV8(R) or V8(2R) from Eq. ~7! we get

V8~2R!52V8~R!5gu. ~12!

Substituting Eqs.~10! and ~11! in Eq. ~12! we have

tan~gR!52g,

so that

R5
tan21~2g!1np

g
.

RequiringR to be positive andV(x) to be positive for
2R,r ,R, leads us to choose

R5
2tan21~g!1p

g
. ~13!

Note thatA.0. R is then a monotone decreasing function
g, and therefore of the gaing.

This is also true for other forms of the connection kern
K. As an example, consider the kernel

K~r 2r 8!5cos~r 2r 8!. ~14!

By a similar treatment it is shown that a solution is obtain
with

R5
1

g
. ~15!
y

f

l

d

The kernel

K~r 2r 8!5Q~12ur 2r 8u!~12ur 2r 8u! ~16!

will result in a peak of activity of semiwidth

R5
p

A2g
. ~17!

Equations of this type~5! have more solutions in addition
to the ones considered above, representing a single act
peak. For example, if we consider an infinite environme
periodic solutions will be present as well, representing a r
of activity peaks separated by regions of zero activity. Th
solutions can be verified to be unstable if we model the
hibition as an homogeneous term acting on all cells in
same way and depending on the average activity. Intuitiv
if we perturb the solution by infinitesimally displacing one
the peaks, it will tend to collapse with the neighbor that h
come closer.

B. The two-dimensional case

To model the place cells network in the hippocampus,
need to extend this result to a two-dimensional environme
The equation for the neural activity will be

V~r !5gF E
M

dr 8K~ ur2r 8u!V~r 8!2uG1

. ~18!

The generalization to 2D is straightforward if for the ke
nel K(ur2r 8u) we consider the one with Fourier transform

K̂~p!5
2

11p2
, ~19!

@the two-dimensional analog of the kernel of Eq.~8!# that is,
a kernel resembling the propagator of a Klein-Gordon fi
in Euclidean space. The fact that this kernel is divergent
(r2r 8)→0 does not give rise to particular problems, sinc
in the continuum limit of Eq.~4!, the contribution to the field
h coming from the nearby points will stay finite, and in fa
two units will be assigned pfc’s so close to each other as
yield an overwhelmingly high connection only with a sma
probability. Let us look for a solution with circular symmetr
such that activityV(r ) is zero outside the circle of radiusR,
C(R). If we apply the Laplacian operator on both sides o

V~r !5gE
C~R!

dr 8K~r2r 8!V~r 8!2u, ~20!

we obtain

¹2V~r 8!52g2V~r 8!1gu ~21!

~again,g252g21), which in polar coordinates reads

V9~r !1
1

r
V8~r !52g2V~r !1gu. ~22!

The solution is
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V~r !5AJ0~gr !1
gu

2g21
. ~23!

J0 is the Bessel function of order 0. For the solution
vanish on the boundary ofC(R) one must take

A5
gu

~2g21!J0~gR!
.

The other condition that determinesR may be found by
substituting Eq.~23! in Eq. ~20!. Here again,R(g) is a
monotone decreasing function. As in the one-dimensio
case, solutions with a nonconnected~or even nonconvex!
support can be seen not to be stable.

III. STORING MORE THAN ONE MAP

Let us imagine now that the pfc’s for each cell are dra
with uniform distribution on the environment manifoldM ,
and connections are formed according to Eq.~2!. Several
‘‘space representations’’ may be created by drawing agai
random the pfc of each cell from the same distribution. T
connection between each pair of cells will then be the sum
a number of terms of the form~2!, one for every ‘‘space
representation,’’ or ‘‘map,’’ or ‘‘chart.’’ Withp5aN maps,
and the pfc of theith cell in themth map indicated byr i

(m) :

Ji j 5 (
m51

p uM u
N

K~ ur i
~m!2r j

~m!u!. ~24!

The question that immediately arises is: what is the
pacity of this network, that is, how many maps can we sto
so that stable activity configurations, corresponding to so
region in the environment described by one map, like
ones described by the solutions of Eq.~6!, are present? The
problem resembles the classic attractor neural network p
lem @1#, with threshold linear units. A standard treatment h
been developed@6# allowing us to calculate the capacity of
network of threshold linear units with patterns drawn from
given distribution and stored by means of a hebbian rule.
treatment is very simplified in the extreme dilution lim
@7,8#. In the next sections it will be shown how this treatme
can be extended to the map case, first for one particular f
of the kernelK, leading to the solution of the capacity pro
lem for a fully connected network; in the following, the s
lution is extended to more general kernels, first in the dilu
limit, then for the fully connected network.

Another related question is: how much information is t
synaptic recurrent structure encoding, and in which sens
the synaptic structure a store of information? The aim is
develop a full parallel between the multichart network a
autoassociative networks, and if possible to characterize
parameters constraining the performance of this system.

A. The fully connected network: ‘‘Dot product’’ kernel

Let us consider a manifoldM with periodic boundary con-
ditions, that is, a circle in one dimension and a torus in t
dimensions. The pfc of a cellr i can then be described by
two-dimensional unit vectorhi for the one-dimensional cas
and by a pair of unit vectorshi

1,2 for the two-dimensional
al
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case. Suppose now that the contribution from themth map to
the connection between celli and cellj is given by

K~ ur i
~m!2r j

~m!u!5(
l 51

d

~hi
l ~m!

•hj
l ~m!11!, ~25!

so that

Ji j 5
1

N (
m51

p

(
l 51

d

~hi
l ~m!

•hj
l ~m!11!, ~26!

whered is the dimensionality.
p5aN is the number of stored charts. Equation~25! de-

scribes an excitatory, very widespread form for the kernel~2!
~the contribution to the connectivity is zero only if the rpc
of the two cells are at the farthest points apart, i.e., at 180
This spread of connectivity would lead to configurations
activity that are large in the rpc space, which translated
autoassociative memory language would be very ‘‘u
sparse,’’ i.e., very distributed representations. It is theref
plausible that this will severely limit the capacity of the ne
In any case, the form of Eq.~25!, factorizable in one term
depending onhi and one term depending onhj , after incor-
porating the constant part in a functionb0(x), makes it pos-
sible to perform the free-energy calculation through Gau
ian transformations as in@6#. A similar model has been
studied in@9# with McCulloch-Pitts neurons.

A Hamiltonian useful to describe the thermodynamics
such a system is

H52
1

2 (
i , j ~Þ i !

Ji j ViVj2NBS (
i

Vi

N D
2(

l
(

i
(
m

sl ~m!
•hi

l ~m!Vi , ~27!

whereB(x)5*xb(y)dy, andb(x) is a function describing a
uniform inhibition term depending on the average activity
the net.sl (m) is a symmetry breaking field, pointing in
direction in themth map space. The mean-field free ener
in the replica-symmetric approximation can be calcula
~the partition function is calculated as the trace over a m
sure that implements the threshold-linear transfer functi
see@6#!. The presence of a phase with spatially specific
tivity correlated with one map will be signaled by solution
of the mean-field equations with a nonzero value for
order parameter

xl ~m!5
1

Nd (
i 51

N

hi
l ~m!Vi , ~28!

which plays the role of the overlap in an autoassociat
memory. This parameter has the meaning of a popula
vector @10#, that is, the animal position is indicated by a
average over pfc’s of the cells weighted by cells activity.

The set of resulting mean-field equations can be redu
to a set of two equations, Eqs.~A7! and ~A8!, in two vari-
ables, the ‘‘nonspecific’’ signal-to-noise ratio,w, and the
‘‘specific,’’ space-related signal-to-noise ratiov. The details
of the calculation are reported in Appendix A.
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The critical valueac indicating the storage capacity of th
network is the maximum value for which Eq.~A7! still ad-
mits solutions corresponding to space-related activity~non-
zerov) and may be found numerically. At this valueac the
system undergoes a first-order phase transition toward
state in which no space-related activity is possible. Equa
~A8! gives the range of gain values for which there ex
solutions at a givena<ac @6#.

In this model there is no possibility of modulating th
spread of connections in the chart space. As we anticipa
the activity configurations that one obtains are very wi
with a large fraction of units active at the same time. Ce
will have very large place fields, covering a large part of t
environment~of the order of roughly one half for the one
dimensional case, and roughly one quarter for the tw
dimensional case!. As one would infer from the analysis o
autoassociative memories storing patterns, for example
nary, these ‘‘unsparse’’ representations of space will lead
a very small capacity of the net.

For the model defined on the one-dimensional circle
capacity found isac;0.03. At this value the system unde
goes a first-order transition. Asa increases beyondac , x
jumps discontinuously from a finite value to zero.

The capacity for the diluted analog of this model~see@8#,
Appendix A and Sec. III B! is given by the equation

E1~w,v![@~11d!A2#22aA350. ~29!

Remember that in this casep5acN wherec is the connec-
tivity fraction parameter; see Sec. III B. In this caseac
;0.25. Atac the transition is second order, with the ‘‘spati
overlap’’ x approaching continuously zero, verified at lea
with the precision at which it was possible to solve nume
cally Eq. ~29!. For the 2D case, storage capacities areac
;0.0008 for the fully connected network anda;0.44 for
the diluted network.

To get a larger capacity, and to provide a possible co
parison with the experimental data from the hippocampus
which the tuning of place fields is generally narrow, we m
extend our treatment to more general kernels, and this wil
done in the following two sections.

B. Generic kernel: Extremely diluted limit

Consider a network in which every threshold-linear un
whose activity is denoted byVj , senses a field

hi5
1

c (
j Þ i

Ci j Ji j Vj , ~30!

whereJi j is given by Eq.~24!. From now on the kernelK is
defined as

K~r2r 8!5K̂~r2r 8!2K̄,

K̄5^^K̂~r2r 8!&& ~31!

for any r , where ^^ && means averaging overr . With this
notation, whatever the original kernelK̂, K is the subtracted
kernel which averages to zero. The manifoldM is taken with
periodic boundary condition~that is a circle in one dimen
sion and a torus in the two-dimensional case!.
a
n
t

d,
,
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Ci j is a ‘‘dilution matrix’’

Ci j 5H 1 with prob c,

0 with prob 12c,
~32!

and Nc/ ln N→0 as N→`. In the thermodynamic limit
N→` the activity of any two neuronsVi and Vj will be
uncorrelated@7#. A number of chartsp5acN is stored.
Looking for solutions with one ‘‘condensed’’ map, that i
solutions in which activity is confined to units having pfc fo
a given chart in a certain neighborhood, it is possible to w
the fieldhi as the sum of two contributions, a ‘‘signal,’’ du
to the condensed map and a ‘‘noise’’ term,rz ~z being a
random variable with Gaussian distribution and varian
one! due to all the other, uncondensed, maps. In the c
tinuum limit, labeling units with the positionr1 of their pfc
in the condensed map,

h~r1!5gE
M

dr18K~r12r18!V~r18!1rz; ~33!

the noise will have a variance

r25ayuM u2^^K2~r2r 8!&&, ~34!

where

y5
1

N (
i 51

N

^Vi
2&. ~35!

The fixed-point equation for the average activity profi
x1(r ) is

x1~r !5gE1

Dz„h~r !2u…, ~36!

where againDz is the Gaussian measure, and

h~r !5E dr 8K~r2r 8!x1~r 8!1b~x!2rz ~37!

and

x5E dr

uM u
x1~r ! ~38!

is the average overall activity. The average squared acti
~entering the noise term! will read

y5g2E dr

uM u E
1

Dz„h~r !2u…2. ~39!

The fixed-point equations may be solved introducing
rescaled variables

w5
b~x!2u

r
, ~40!

v~r !5
x1~r !

r
. ~41!
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The fixed-point equation forv(rW) is

v~r !5gN S E dr 8K~r2r 8!v~r 8!1wD , ~42!

where

N~x!5xF~x!1s~x!, ~43!

@F(x) ands(x) are defined in Eq.~A15! and Eq.~A16!# is
a ‘‘smeared threshold linear function,’’ monotonically in
creasing, with

lim
x→2`

N~x!50

and

lim
x→1`

N~x!/x51.

In terms ofw andv(r ), y reads

FIG. 1. The storage capacity plotted as a function of the ‘‘m
sparsity’’ am , for the 1D model, for the extremely diluted~upper
curve! and the fully connected~lower curve! limits.

FIG. 2. Same as Fig. 1, for the 2D model. The capacity
smaller than for the 1D model for the sameam .
y5r2g2E dr

uM u
MS E dr 8K~r2r 8!v~r 8!1wD , ~44!

where

M~x!5~11x2!F~x!1xs~x!. ~45!

By substituting Eq.~44! in Eq. ~34!, we obtain

1

a
5g2uM u^^K&&E drMS E dr 8K~r2r 8!v~r 8!1wD .

~46!

If we can solve Eq. 42 and findv(r ) as a function ofw
and g, a solution is found corresponding to a value ofa
given by Eq.~46!. To find the critical value ofa, we have to
maximizea overw andg. The mathematical solution of Eq
~42! is treated in Appendix B.

With this model, we can modulate the spread of conn
tions by acting onK(r2r 8) or alternatively, by varying the
size of the environment. The results are depicted in Fig. 1
the 1D circular environment and in Fig. 2 for the 2D toroid
environment~upper curves!. Examples of the solutions o
Eq. 42 are displayed in Fig. 3 for the 1D environment and
Fig. 4 for the 2D environment.

We note that, as the environment gets larger in comp
son to the spread of connections~therefore, to the size of the
activity peak!, the capacity decreases approximately as

ac;21/ln~am!, ~47!

wheream is themap sparsityand it is equal to

am5
kd

uM u
, ~48!

wherekd is a factor roughly equal to;4.5 for the 1D model
and;3.6 for the 2D model.

p

s

FIG. 3. The ‘‘activity peak’’ profile corresponding to the solu
tion of Eq. ~42! at the maximal storage level atuM u530 anduM u
515. The second case is plotted expanded to match the env
ment size of the first one and to show the effect of more widespr
connections.
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That is, the sparser the coding, the less the capacity.
is, at first glance, in contrast with what is known from t
theory of autoassociative networks, in which sparser rep
sentations usually lead to larger storage capacities.

For comparison, keeping the formalism of@6#, for
threshold-linear networks with hebbian learning rule, enc
ing memory patterns$r i% i 51 . . . N with sparsitya defined as

ap5
^^r &&2

^^r 2&&

~for binary patterns this is equal to the fraction of acti
units!, and for smalla, the capacity is given by

ap;
1

ap ln~1/ap!
. ~49!

The apparent paradox~larger capacity with sparser pa
terns, smaller with sparser charts! is solved as one recognize
that each chart can be seen as a collection of configurat
of activity relative to different points in space covering, as
a tiling, the whole environment. Each configuration
roughly equivalent to a pattern in the usual sense. Intuitiv
and in a sense that will be made clearer below, a cha
equivalent, in terms of ‘‘use of synaptic resources,’’ to
number proportional toam

21 of patterns of sparsityam .
The proportionality coefficient or, equivalently, the di

tance at which different configurations are to be conside
to establish a correct analogy, will be dealt with in Append
D. These considerations and the comparison of Eqs.~47! and
~49! make clear thatac is the exact analog of the patter
autoassociators’ap .

C. Inhibition independent stability

The dynamical stability of the solutions of Eq.~42! is in
general determined by the precise functional form chosen
the inhibition, which we assumed to be a function of t
average overall activity in the net. Nevertheless, there
fluctuation modes that leave the average activity unalte
Stability against these modes is therefore unaffected by
inhibition and may be checked already for a general mo
Let us consider a ‘‘synchronous’’ dynamics, that is, all t
neurons are updated simultaneously at each time step.
evolution operator for the variablesV(r ,t) andr(t) is

FIG. 4. The maximal storage activity peak profile in 2D
uM u5400.
is

e-

-

ns

,
is

d

or
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V~r ,t11!5gr~ t !

3N S E
M

dr8

uM u
K~r2r 8!

V~r 8,t !

r~ t !
1

b„x~ t !…

r~ t ! D ,

~50!

r2~ t11!5g2auM ur2~ t !^^K2&&E
M

dr

3MS E
M

dr8

uM u
K~r2r 8!

V~r 8,t !

r~ t !
1

b„x~ t !…

r~ t ! D .

~51!

This evolution operator has as its fixed pointsV0(r )
5r0v0(r ) and r0 wherev0(r ) and r0 are the solutions of
Eqs.~42!, ~34!, and~44!, i.e., the stable states of our system

We can linearize the evolution operator arou
@V0(r ),r0# and look for fluctuation modes~eigenvectors!
@dV(r ),dr# with

E
M

dr dV~r !50. ~52!

We obtain the following equations:

ldV~r !5gF„u0~r !…

3F E
M

dr 8K~r2r 8!dV~r 8!G1gs„u0~r !…dr ,

~53!

ldr5S 12
1

2
gauM u^^K2&&E

M
dr u0~r !v0~r ! D

3dr1
1

2
gauM u^^K2&&E

M
dr u0~r !dV~r !, ~54!

where

u0~r !5N21S v0~r !

g D .

Inserting Eq.~53! in Eq. ~52!:

dr52

E
M

dr 8F„u0~r !…F E
M

dr K~r2r 8!dV~r 8!G
E

M
dr s„u0~r !…

.

~55!

Equation~55! can be inserted again in Eq.~53!, obtaining
a closed integral equation indV. Unfortunately, this equation
is very difficult to solve, but we can derive a stability cond
tion by making an ansatz in the form of the eigenfuncti
dV(r ). More precisely, let us concentrate on the 1D ca
We look for solutions with even symmetry~we know there
must be an eigenfunction with odd symmetry, and an eig
value equal to 1, corresponding to a coherent displacem
of the activity peak!. This kind of solution corresponds t
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spreading and shrinking of the activity peak. Let us assu
that the even eigenfunction with the highest eigenvalue~the
most unstable! has only two nodes@an even eigenfunction
must have at least two nodes because of Eq.~52!#, at r 0 and
2r 0. Let us take the sign of the eigenfunctiondV(r ) such
that dV(0).0. From Eqs.~52! and ~55! we see that

dr,0.

Now, from Eq.~54!

l5S 12
1

2
gauM u^^K2&&E

M
dr u0~r !v0~r ! D

1
1

2
gauM u^^K2&&E

M
dr u0~r !

dV~r !

dr
, ~56!

and we recognize that

E
M

dr u0~r !
dV~r !

dr
,0.

Thus,

l,12
G

2
~57!

with

G5gauM u^^K2&&E
M

dr u0~r !v0~r !. ~58!

Thus, if the ansatz we formulated holds, we have a sta
ity condition G.0, which is found to be fulfilled for all the
solutions we found relative to maximal storage capac
This implies that the storage capacity result is not affected
instability of the solutions, provided of course that an app
priate form for inhibition is chosen. This stability result
also related to the correlation in the static noise for two
lutions centered at different pfc’s, as we will show in Appe
dix D.

It can also be shown that by taking thea→0 limit ~i.e.,
the single chart case!, one always hasG.0 since it is
v0(r )50 whenu0(r ),0.

D. The fully connected model

The treatment of the model with the fully connected n
work and a kernelK for connection weights satisfying th
condition ~31! will use the replica trick to average over th
disorder~the realizations of ther ’s! and will eventually lead
to a nonlinear integral equation for the average activity p
file in the space of the ‘‘condensed map’’ very similar to E
~42!. Let the Hamiltonian of the system be

H52
1

2 (
i , j ~Þ i !

Ji j
c ViVj2NBS (

i

Vi

N D 2(
i

(
m

sl ~m!
•r i

~m!Vi ,

~59!

where now theJi j
c are given by Eq.~24! with a generic kernel

K~r2r 8!5K̂~r2r 8!2K̄, ~60!
e

il-

.
y
-

-
-

-

-
.

where, again,

K̄5^^K̂~r2r 8&&.

The free-energy calculation is sketched in Appendix
Again, the stable states of the system are governed by m
field equations. The mean-field equation~C16! is an integral
equation in the functional order parameterv(r ), the average
space profile of activity.

If we are able to solve Eq.~C16! and find vs(r ) as a
function ofw andg8, by substituting Eqs.~C17! and~C18! in
Eq. ~C11! we have an equation that gives us the value oa
corresponding to that pair (g8,w). ac is then the maximum
of a over the possible values of (g8,w).

To solve Eq.~C16!, it is easy to verify that ifṽ(r ) is a
solution of

ṽ~r !5g8N S E
M

dr 8K̂~r2r 8!ṽ~r 8!1ŵD ~61!

with

ŵ5w2K̄E
M

dr ṽ~r !,

that is, the same equations as Eqs.~B2! and ~B3!, then

ṽ~r !5E
M

dr 8@L~r2r 8!2L̄#ṽ~r 8!

is a solution of Eq.~C16!. ṽ can therefore be interpreted a
the average activity profile, apart from a constant. Equat
~61! can be solved with the same procedure used for
~42!, and the maximum value ofa can be found by maxi-
mizing overg8 and ŵ.

The results for 1D and 2D environment are depicted
Figs. 1 and 2~lower curves!. As we may expect from pattern
autoassociator theory, the capacity is much lower than
the diluted model, due to an increased interference betw
different charts.. As the sparsitya;1/uM u gets smaller, the
capacities of the two models get closer, both being prop
tional to 1/ln(KduMu). Reducing the sparsity parameter
space representations has therefore the effect of minimi
the difference between nets with sparse and full connectiv

E. Sparser maps

A possible extension of this treatment is inspired from t
experimental finding that, in general, not all the cells ha
place cells in a given environment. Reference@11#, e.g., re-
ported that;28– 45% of pyramidal cells of CA1 have
place field in a certain environment. We would like to s
how this fact could affect the performance of the multich
autoassociator. It is then natural to introduce a new spar
parameter, thechart sparsity ac indicating the fraction of
cells which participate in a chart. We will show that, for th
capacity calculation,ac

21 ‘‘sparse’’ charts are equivalent to
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single ‘‘full’’ chart, of size ac
21 . We will present the argu-

ment for the diluted case; the fully connected case is co
pletely analogous.

Let mi
m be equal to 1 if celli participates in chartm, that

is, with probabilityac . Thus, the synaptic couplingJi j will
read

Ji j 5 (
m51

p uM u
acN

K~r i
~m!2r j

~m!!mi
mmj

m . ~62!

Let us consider a solution with one condensed map: c
participating with pfc inr in that map will have a space
related signal-to-noise ratio

v~r !5gN S E dr 8K~r2r 8!v~r 8!1wD ~63!

for all the neuronsnot participating in the condensed map w
will have

v5N~w!. ~64!

The noise will have a variance

r25aacyS uM u
ac

D 2

^^K2~r2rm&&, ~65!

that isac times the value we would get for the same numb
of ‘‘full’’ charts with size uM u/ac , and now

y5r2g2H acE
M

dr

uM u
MS E dr 8K~r2r 8!v~r 8!1wD

1~12ac!M~w!J . ~66!

By comparing Eqs.~44! and ~66!, and remembering tha
for rW far from the activity peakv(r );N(w), we realize that

FIG. 5. The maximum stored information per synapse, a
function of 1/uM u.
-

ls

r

this y value is approximately equivalent to they value we
would get for ‘‘full’’ charts of sizeuM u/ac .

Inserting Eqs.~65! and~66! in Eq. ~46!, one finds, for the
maximal capacity:

ac ~sparse charts!;
1

acln~KduM u/ac!
. ~67!

As we anticipated, one may interpret this result as f
lows: the capacity is the same as if we had takenac

21

‘‘sparse’’ charts, including;N cells, and put them side by
side to form one single ‘‘full’’ chart. If we have started wit
aC ‘‘sparse’’ charts we now haveacaC ‘‘full charts.’’ From
Eq. ~46! we see that we can store at mostac~full charts!C full
charts and

ac~full charts!;
1

ln~KduM u/ac!
,

and this explains Eq.~67!. Therefore, this network isas ef-
ficient in terms of spatial information storage as the one o
erating with full charts.

IV. INFORMATION STORAGE

Like a pattern autoassociator, the chart autoassociato
an information storing network. The cognitive role of such
module could be to provide a spatial context for informati
of a nonspatial nature contained in other modules, wh
connect with the multichart module. Each chart represen
different spatial organization, possibly related to a differe
environmental/behavioral condition. Within each chart, a c
is bound to a particular position in space, thus being
means for attaching some piece of knowledge to a partic
point in space, through intermodule connections. To giv
very extreme, unrealistic, but perhaps useful, example, le
assume that each cell encodes a particular discrete item
the memory of some events happened somewhere in the
vironment, in ‘‘grandmother cell’’ fashion, encoding ‘‘th
grandmother sitting in the armchair in the dining room.’’ Th
encoding of the ‘‘grandmother’’ may be accomplished
some set of afferents from other modules. The multich
associator can then attach a spatial location to that mem
of the ‘‘grandmother.’’ The spatial location encoded is id
ally represented for each cell by its pfc.

In this sense, the information encoded in the netwo
which can be extracted by measures of the activity of
units, is the information about the spatial tuning of the un
that is their pfc’s.

To restate this concept in a formal way, we look for

I s5 lim
S→`

1

CN(
m

(
i

I ~r i
m,$Vi

m~k!%k51 . . . S! , ~68!

that is, the information per synapse that can be extrac
from Sdifferent observations of activity of the cells with th
animal in S different positions, and the system in activi

a
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states related to chartm. This quantity does not diverge a
S→`, since repeated observations of activity with the a
mal in nearby positions do not yield independent inform
tion, because of correlations between activity configuratio
correlations that decrease with the distance at which the
figurations are sampled.

The full calculation of this quantity involves a function
integration over the distribution of noise affecting cell act
ity as the animal is moving and exploring the whole enviro
ment. In Appendix D we suggest a procedure to approxim
this quantity based on an ‘‘information correlation length’’l I
such that samples corresponding to animal positions at a
tancel I yield approximately independent information.

I s is the amount of spatial information which is stored
the module. It is the exact analog of the stored informat
for pattern autoassociators@6#. As for storage capacity, it is
to be found numerically, by maximization overw andg.

As for the capacity, one can find the solution that ma
mizesI s . The resultingI max is a function of the size of the
relative spread of connectionsa51/uM u, and it amounts to a
fraction of bit per synapse~see Fig. 5!.

As with pattern autoassociators, the information sto
increases with sparser representations. The increase is
marked for the fully connected network. For very sparse r
resentations the performance of the fully connected mo
approaches the extreme dilution limit.

V. DISCUSSION

We have studied the multichart threshold linear associ
as a spatial information encoding and storage module.
have given the solution for the dot-product kernel mod
then introduced a formalism in which the generic kern
problem is soluble.

The second treatment has the advantage of providin
form for the average activity peak profile, which can be co
pared with the experimental data~see, for example,@9#,
Fig. 1!.

We have shown that the nonlinear integral mean-fi
equation@Eq. ~42!# can be solved at least for one class
connection kernelsK(r2r 8).

The storage capacity for both models has been found.
note that the capacity for the dot-product model is comp
ible with the wide kernel~nonsparse! limit of the generic
model in one and two dimensions in the fully connected a
in the diluted condition.

The generic kernel treatment makes it possible to man
late the most relevant parameter for storage efficiency,
-
-
s,
n-

-
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is-
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l
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the spread of connections. It is shown that this param
plays a very similar role as sparsity for pattern autoasso
tors. In the multichart case, moreover, the effective spar
of the stable configurationsis determined also by the valu
of the gain parameterg, as shown analytically for the noise
less case. Nevertheless, the capacity of the network dep
on the spread of connection parameterac5kd /uM u through a
relation which is the exact analog of the relation betwe
sparsity and capacity for the pattern autoassociator, at lea
the very sparse limit.

We have only considered here the capacity problem
one form of the connection kernel, although the treatment
propose is applicable, at least, to the other kernels consid
for the noiseless case. Our hypothesis is that a similar law
sparsity is to be found as Eq.~47!, at least in the high spar
sity limit, for more general forms of the kernel.

We have then shown that the capacity scales in suc
way that the information stored is not changed when onl
fraction of the cells participate in each chart. In this case
firing of a cell carries information not only about the positio
of its pfc in the chart environment, but also aboutwhich
environment the cell has a place field in. This informati
adds up, so that 1/ac charts can be assembled in a sing
larger chart of size 1/ac times larger.

We have introduced a definition of stored information f
the multichart memory network, which measures the num
of effective different locations which can be discriminated
such a net: representations of places at a distance less thl I
are confused, because of the finite width of the activ
peaks, and because of the static noise.

l I does not vary much whenuM u varies. This is consisten
with the fact that the storage capacity is well fitted by E
~47! with kd;4.5. l I turns out to be;3.5 for the 1D model,
with the arbitrary value forf of 0.95.l I is therefore similar to
the ‘‘radius’’ of the activity peak which should correspond
the ‘‘pattern’’ in the parallel between the chart autoassocia
and the pattern autoassociator.

It was not possible to carry over the calculation ofr 12 and
I 2 in the 2D model as it turned out to be too computationa
demanding. Therefore, we are not able to show the value
the storable information. The fact that the storage capa
follows Eq. ~47! also in this case is an indirect hint of
behavior very similar to what is found in 1D.

APPENDIX A: REPLICA-SYMMETRIC FREE ENERGY
FOR THE ‘‘DOT PRODUCT’’ KERNEL MODEL

The replica symmetry free energy reads
f 52TK K E Dz ln Tr~h,h2!L L 2
1

2 (
~s!,l

ux~s!,l u22B~x!2 (
~s!,l

~ us~s!,l ux1s~s!,lx~s!,l !

2 (
~s!,l

t~s!,lx~s!,l2tx2r 0y01r 1y11
ad

2bS ln@12T0b~y02y1!#2
by1

12T0b~y02y1! D ~A1!
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very much like Eq.~19! in 6 and with the same meaning fo
symbols, except that the population vectorx(s),l plays the
role of the overlapxs, the vector Lagrange multipliert(s),l

appears instead of its scalar counterpartts, and the dimen-
sionality d appears multiplying the last term.h andh2 are

h52t2 (
~s!,l

t~s!,l
•h~s!,l2z~22Tr1!1/2, ~A2!

h25r 12r 0 . ~A3!

^^ . . . && means averaging over the distribution of pfc’sh. T
is the noise level in the thermodynamic analysis.T0 is de-
fined here as

^^~ t1
l
•h~m!,l !~ t2

l
•h~m!,l !&&5

T0

d
t1
l
•t2

l , ~A4!

and it is found to be equal to 1/2 in 1D and to 1 for the 2
torus.

The saddle-point equations can be found from this eq
tion, andt andt(s),l can be eliminated, in the same way as
@6#. Carrying on the calculation theT50 equations eventu
ally reduce to two equations in the two variables~in the case
of a single ‘‘condensed’’ map!:

w5
@b~x!2u#

r
, ~A5!

vl5
~xl1sl !

r
. ~A6!

Take, for simplicity,uvl u5v ~while the direction is set by
vl}sl). The two equations read

E1~w,v![~A11dA2!22aA350, ~A7!

E2~w,v!v[~A11dA2!S 1

gT0~11d!
1a2A2D2aA250,

~A8!

whered5us1u/ux1u is the relative importance of the extern
field and

A1~w,v !5
1

v2T0
K K vl

•h lE1

DzS w1(
l

vl
•h l2zD L L

2 K K E1

DzL L , ~A9!

A2~w,v !5
1

v2T0
K K v~1!

•h~1!E1

DzS w1(
l

vl
•h l2zD L L ,

~A10!

A3~w,v !5K K E1

DzS w1(
l

vl
•h l2zD 2L L .

~A11!

Dz is the Gaussian measure (2p)21/2e2z2/2dz. The 1 sign
on the integral means that integration extremes are cho
such that (w1( lv

l
•h l2z).0.
a-

en

When the quenched average on theh’s is performed,A1,
A2, A3 reduce to~for the d-dimensional torusC d):

A1~w,v !5
1

~2p!dvT0
E du l S (

l
cosu l D

3F S w1v(
l

cosu l2vT0DFS w1v(
l

cosu l D
1S w1v(

l
cosu l DsS w1v(

l
cosu l D G ,

~A12!

A2~w,v !5
1

~2p!dvT0
E du l S (

l
cosu l D

3F S w1v(
l

cosu l DFS w1v(
l

cosu l D
1S w1v(

l
cosu l DsS w1v(

l
cosu l D G ,

~A13!

A3~w,v !5
1

~2p!dE du lF11S w1v(
l

cosu l D 2G
3FS w1v(

l
cosu l D 1S w1v(

l
cosu l D

3sS w1v(
l

cosu l D , ~A14!

where

F~x!5E
2`

x dz

A2p
e2z2/2, ~A15!

s~x!5
e2x2/2

A2p
. ~A16!

APPENDIX B: GENERIC KERNEL, EXTREME DILUTION

Let us consider the one-dimensional case first, and c
sider the kernel

K~r2r 8!5K̂~r2r 8!2
2

uM u
5e2ur2r8u2

2

uM u
. ~B1!

Equation~42! can be written

v~r !5gNS E dr 8K̂~r2r 8!v~r 8!1ŵD , ~B2!

where

ŵ5w2
2

uM u E dr 8v~r 8!. ~B3!
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For the purpose of findingac , maximizing with respect toŵ
is equivalent to maximizing with respect tow.

To solve Eq.~42!, the transformation

u~r !5N21S v~r !

g D ~B4!

is used, which results in

u~r !5gE dr 8K̂~r2r 8!N @u~r !#1ŵ. ~B5!

By differentiating twice we get

u9~r !522gN @u~r !#1u~r !2ŵ52
d

du
U @u~r !#,

~B6!

where

U5Eu

du8~2gN~u8!2u81ŵ!. ~B7!

The differential equation~B6! is locally equivalent to the
nonlinear integral equation~B5!. Equation ~B6! must be
solved numerically. As in the single-map case, not all
solutions of the differential equation~B6! are a solution of
the integral equation~B5!. Solutions of Eq.~B6! are a solu-
tion of Eq. ~B5!, strictly speaking, only in the caseM[R.
Nevertheless, we force the equivalence since, also in the
of limited environments, with periodic boundary condition
possible pathologies are not important for solutions with
tivity concentrated far from the boundaries.

In order to classify the solutions of Eq.~B6! it is useful to
study the ‘‘potential function’’U. If w is negative and large
enough in absolute value,U(u) has a maximum and a mini
mum at the two roots of equation

d

du
U ~u!52gN~u!2u1ŵ50, ~B8!

or, in terms ofv

v5gN~2v1ŵ!, ~B9!

corresponding to constant solutions of Eq.~42!. We look for
solutions representing a single, symmetric peak of activ
centered inr 50. We therefore need to solve the Cauc
problem given by Eq.~B6! with the initial conditions:

u~0!5u0 , ~B10!

u8~0!50. ~B11!

From Fig. 6 it is clear that ifu0.u* the solution will
escape to2` for r tending to infinity. This will correspond
to v tending asymptotically to 0, and this solution cannot
a solution for the integral equation~42! as the asymptotic
value must be a root of Eq.~B9!.

The solutions of the problem withu0,u* are periodic,
corresponding to multiple peaks of activity, and they are d
carded as unstable with the same arguments holding for
single map case. There is also the constant solution
e

se
,
-

y

e

-
he

u~r !5umin , ~B12!

which obviously will not correspond to space-related act
ity. The solution corresponding to the single activity pe
can only be the one withu05u* . It tends asymptotically to
umax. This solution can be found numerically and inserted
Eq. ~46! to find the value ofa associated with the pai
(g,ŵ). The solution will only be present for values ofŵ for
which U(u) has the extremal pointsumax andumin , that is

ŵ,ŵ* , ~B13!

whereŵ* is equal to22gN(u* )1u* andu* is the root of
the equation:

F~u!5
1

2g
~B14!

obtained by derivating twiceU, and this shows that Eq.~B5!
cannot have solutions forg,1/2, as in the single-map cas

In the two-dimensional case, we can consider the kern

K~r2r 8!5K̂~r2r 8!2
2

uM u
, ~B15!

whereK̂ is the kernel having the Fourier transform

K̂~p!5
2

11p2
. ~B16!

The solution is worked out in the same way with the tran
formation ~B4! and application of the Laplacian. If we con

FIG. 6. The ‘‘potential’’ functionU(u) defined by Eq.~B7! and
entering the differential equation Eq.~B6!. Solutions withu8(0)
50 andu(0)5u0, with umax,u0,u* are oscillating. The solution
with u05u* is the one we seek, asymptotically approachingumax as
r→`.
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sider solutions with circular symmetry and pass to polar
ordinates (r ,f), the equation forr reads

u9~r !1
1

r
u8~r !522gN „u~r !…1u~r !2w. ~B17!

We still have a single peak solution which tends asympt
cally to umax, but in this case we cannot rely on theU func-
tion argument to find the initial condition atr 50, which has
to be found numerically.

APPENDIX C: REPLICA FREE-ENERGY CALCULATION
FOR THE GENERIC KERNEL

Again we will consider an environmentM with periodic
boundary conditions. We assume that there exists a kernL
such that

E dr 9L~r2r 9!L~r 92r 8!5uM uK~r2r 8!. ~C1!

Instead of the vector order parameterxm that we used for
the dot-product kernel case~or of the scalar overlapxm of
@6#!, we can use the functional order parameter
l

-

i-

l

xm~rW !5
1

N (
i

@L~r2r i
m!#Vi ~C2!

in terms of which the interaction part of the Hamiltonian~59!
reads

1

2 (
i

(
j Þ i

Ji j ViVj

5
uM u
2N (

m
(

i
(

j
@K~r i

m2r j
m!2K̄#ViVj

2
auM u

2
@K~0!2K̄#(

i
Vi

2

5
1

2
N(

m
E dr @xm~rW !#22

auM u
2

@K~0!2K̄#(
i

Vi
2.

~C3!

Introducing the ‘‘square root’’ kernelL allows us to perform
the standard Gaussian transformation manipulation and
carry out the mean-field free-energy calculation in t
replica-symmetry approximation:
f 52TK K E Dz ln Tr~h,h2!L L 2
1

2 (
s
E

M
dr @xs~r !#22

auM u
2

@K~0!2K̄#y01B~x!

2(
s

E
M

dr ts~r !xs~r !2tx2r 0y01r 1y11
a

2b (
p

S ln@12T0~p!b~y02y1!#2
by1

12T0~p!b~y02y1! D , ~C4!
its

fect
where nowT0(p) is the Fourier transform of the kerne
uM uK̂

T0~p!5uM u E
M

dr e2 iprK~r !. ~C5!

We now have

h5b~x!1(
s

E
M

dr 8xs~r 8!@L~rs2r 8!2L̄#

2z~22tr 1!1/2, ~C6!

h252r 01r 1 . ~C7!

TheT50 mean-field equations are much like in@6# apart
from thexs(r ) equation which reads

xs~r !5g8K K @L~rs2r 8!2L̄#

3E1

DzH E
M

dr 8@L~rs2r 8!2L̄#xs~r 8!

1b~x!2u2rzJ L L , ~C8!
where now the1 sign on the integral means that the lim
of integration overz are chosen such that

E dr 8@L~rs2r 8!2L̄#xs~r 8!1b~x!2u.0. ~C9!

g8 is a renormalized gain, which takes into account the ef
of static noise, defined by

~g8!215g212a(
p

T0~p!
C̄

12T0~p!C̄
, ~C10!

whereC̄ is given by Eq.~C18!.
The noise variancer2 is given by

r2522Tr15a(
p

@T0~p!#2y0

@12T0~p!C̄#2
, ~C11!

where

y05~g8!2K K E1

DzH E
M

dr 8@L~rs2r 8!2L̄#

3xs~r 8!1b~x!2uJ 2L L ~C12!
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and

C̄5g8K K E1

DzL L . ~C13!

We now pass to the rescaled variables

vs~r !5
xs~r !

r
, ~C14!

w5
b~x!

r
, ~C15!

obtaining

vs~r !5g8E
M

drs@L~rs2r !2L̄#

3S w1E
M

dr 8@L~rs2r 8!2L̄#vs~r ! D ,

~C16!

y0

r2
5~g8!2E

M

drs

uM u

3MS w1E
M

dr 8@L~rs2r 8!2L̄#vs~r ! D ,

~C17!

C̄5E
M

drs

uM u
FS w1E

M
dr 8@L~rs2r 8!2L̄#vs~r ! D .

~C18!

APPENDIX D: GENERIC KERNEL:
STORABLE INFORMATION CALCULATION

First, the information per synapse we get from a sin
observation of activity, with the animal in a certain positio
times the number of stored charts is

I 15aE dr

uM uH E2`

u~r ! dz

A2p
e2 z2/2

3 lnS e2 z2/2

E ~dr 8/uM u! e2 @z2u~r !1u~r8!2#/2D
1@12f„u~r !…#

3 lnS @12f„u~r !…#

E ~dr 8/uM u! @12f„u~r 8!…#D J . ~D1!

Next, we wish to calculate the joint information from tw
measures of activity, from the same cells, from all cha
while the rat is in two different locations, at a distancee.
These two measures are correlated random variables: le
e

,

V15@h12rz1#1

be the activity of a cell measured while the rat is in positi
1, and

V25@h22rz2#1

be the activity of the same cell while the rat is in position
The two noise variables are distributed according to

joint bivariate Gaussian distribution:

p~z1 ,z2!5
1

2pA12r 12
2

3expS 2
1

2~12r 12
2 !

~z1
21z2

222r 12z1z2!D .

~D2!

The correlation coefficientr 12 is a function of the distance
e, implicitly defined through the equation

r2r 12~e!5auM u^^K2&&y12~e!, ~D3!

wherey12 is defined as

y12~e!5
1

N(
i

^Vi ,1Vi ,2& ~D4!

and assuming periodic boundary conditions:

y12~e!5r2g2E dr

uM u E
11

Dz12 ~D5!

3S E dr8

uM u
K~r2r 8!v~r 8!1w2z1D

3S E dr9

uM u
K~r2r 9!v~r 91e!1w2z2D ~D6!

or

y12~e!5r2g2E dr

uM u E
11

Dz12u~r !u~r1e!, ~D7!

whereu(r ) is defined by Eq.~B4!. The integration measure
for the noise variable is defined as

E11

Dz125E
u~r !2z1.0,u~r1e!2z2.0

dz1dz2p~z1 ,z2!.

~D8!

Inserting Eq.~D7! in Eq. ~D3! yields

r 125auM u^^K2&&g2E dr Q@u~r !,u~r1e!,r 12#, ~D9!

where
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Q~x,y,r 12!5E11

Dz12~x2z1!~y2z2!.

Equation~D9! can be solved numerically. An example
provided in Fig. 7, but a few features can be explored a
lytically, in the neighborhood ofe50. r 1251,e50 is a so-
lution, but now consider what happens whene increases.

The derivatives of

D~r 12,e!5a^^K2&&g2E dr

uM u
Q@u~r !,u~r1e!,r 12#2r 12

~D10!

with respect toe and r 12 must be taken into consideration
One has

]

]e
D~r 1251,e50!

5a^^K2&&g2

3E dr

uM u
]

]y
Q@x5u~r !,y5u~r1e!,1#u8~r !50,

~D11!

]2

]e2
D~r 1251,e50!,0, ~D12!

and

FIG. 7. Ther 12 function plotted as a function of the distanc
between the two pfc’s,e in the uM u530 case.
-

]

]r 12
D~r 12→1,e50!

5a^^K2&&g2E dr

uM u
F„u~r !…21

5E dr

uM u
F„u~r !…S E dr

uM u
M„u~r !…D 21

21. ~D13!

From Eq.~D12! it turns out that when the derivative in Eq
~D13! is greater than zero, the solutionr 1251 disappears as
one moves frome51, but another solution is still present s
that

lim
e→01

r 12~e!,1. ~D14!

Note that the condition

]

]r 12
D~r 12→1,e50!.0

is equivalent to

G5gauM u^^K2&&E
M

dr u~r !v~r !,0, ~D15!

and the quantityG enters in the stability analysis conside
ations we sketched in Sec. III C, at least for the 1D ca
Solutions withG.0 are stable against inhibition orthogon
fluctuations, so that it is likely that the possible patholo
implied by Eq.~D14! reflects an instability of the solution
We have always found numerically that for the solution co
responding to the maximal storage capacity and informati
G.0.

Once we know the joint probability distribution forz1 and
z2, we can calculate the information we can extract about
pfc of a cell from two measurements of activity, while the r
is standing in two positions at a distancee, from all charts:

FIG. 8. The I 2 function plotted as a function of the distanc
between the two pfc’s,e in the uM u530 case. Note thatl I , with
f 50.95 @see Eq.~D17!# would be approximately 3.5. This is see
not to change much whenuM u varies~not shown!.
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I 2~e!5
a

ln2EM

dr

uM u H E11

Dz12F2
1

2~12r 12
2 !

~z1
21z2

222r 12z1z2!

2 lnS E
M

dr 8
uM u

expS 2
1

2~12r 12
2 !

@„u~r 8!2u~r !1z1…
21„u~r 81e!2u~r1e!1z2…

2

22r 12„u~r 8!2u~r !1z1…„u~r 81e!2u~r1e!1z2…# D D G
12E12

Dz12F lnS E
z28.u~r1e!

dz28

2p
expS 2

1

2~12r 12
2 !

~z1
21z28

222r 12z1z28!D D
2 lnS E

M

dr 8
uM u Ez28.u~r81e!

dz28expS 2
1

2~12r 12
2 !

@„u~r 8!2u~r !1z1…
21„u~r 81e!2u~r1e!1z28…

2

22r 12„u~r 8!2u~r !1z1…„u~r 81e!2u~r1e!1z28…# D D G
1E22

Dz12F lnS E
z18.u~r !,z28.u~r1e!

dz18dz28

2pA12r 12
2

expS 2
1

2~12r 12
2 !

~z18
21z28

222r 12z18z28!D D
2 lnS E

M

dr 8
uM u Ez18.u~r8!,z28.u~r81e!

dz18dz28

2pA12r 12
2

expS 2
1

2~12r 12
2 !

@„u~r 8!2u~r !1z18…
21„u~r 81e!2u~r1e!1z28…

2

22r 12„u~r 8!2u~r !1z18…„u~r 81e!2u~r1e!1z28…] !D G J . ~D16!
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The minus signs (2) beside the integration signs mea
that, respectively, the first, or the second condition determ
ing the integration intervals in Eq.~D8! is reversed. The firs
term in the sum accounts for the contribution coming fro
measurement in which both activity values are positive. T
second term is the contribution from measurements in wh
one value is zero and the other is positive. The third te
comes from measurements in which both values are z
For e50, I 25I 1, since the two measures are identical.

For largee one hasI 2;2I 1, because the noise decorr
lates and because in general the two measures will give
zero results in distinct regions of the environment. The
havior of I 2 as a function ofe is exemplified in Fig. 8. We
define as ‘‘information correlation length’’ the valuel I of e
for which
ird
y

-

e
h

o.

n-
-

I 22I 15 f I 1 , ~D17!

wheref is a fixed fraction, say 0.95. We may say that me
surements of activity with the rat in two positions at a d
tancel I give independent information.

This allows us to define as thestored information Is the
quantity

I s5I 1

uM u

l I
d

, ~D18!

that is, sampling the activity of a celluM u/ l I
d times, with the

animal spanning a lattice with sizel I , we may effectively
add up the information amounts we get from each sin
sample, as if they were independent.
.
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